Connect with us

Published

on

Scientists have developed a patch capable of tackling bacteria on the skin using mild electric pulses, which could help reduce infections if the bacteria were to enter the bloodstream. Known as the Bioelectronic Localized Antimicrobial Stimulation Therapy (BLAST) patch, this device emits a harmless electrical current designed to target specific skin bacteria that pose infection risks.

Testing Yields Promising Results on Pig Skin

The device was recently tested on pig skin, which shares structural similarities with human skin and is often used in preclinical studies. Researchers applied Staphylococcus epidermidis bacteria to the skin, which usually resides on human skin without causing harm. However, when these bacteria are introduced into the body via medical devices like catheters, they can lead to severe infections.

When placed on the pig skin, the BLAST patch released electric pulses every ten minutes over an 18-hour period, delivering a mild charge comparable to that used in pacemakers. This method significantly reduced the formation of biofilms—dense layers that help bacteria cling to surfaces and evade treatments—resulting in a nearly tenfold decrease in bacterial levels on the treated skin.

Mechanism Targets Bacteria in Specific Conditions

In laboratory tests, S. epidermidis showed a response to electrical currents only when the skin environment was mildly acidic, similar to human skin’s natural pH. Researchers enhanced this effect by adding an acidifying hydrogel to the BLAST patch. Acidity is critical to suppressing bacterial biofilm development, complicating infection control in medical settings.

Early Findings Hint at Medical Applications

Published on 24 October in the journal Device, the BLAST patch might also be effective in sterilising surfaces of medical devices, providing an added layer of protection against bacterial infections. Bozhi Tian, one of the study’s authors and a professor of chemistry at the University of Chicago, noted that reducing reliance on preventive antibiotics could help address antibiotic resistance concerns.

Further Testing Needed

Future research will explore BLAST’s effectiveness on other bacterial strains and in animal and, eventually human trials. If proven successful, the device may offer a practical tool for infection prevention in medical facilities within five years.

Continue Reading

Science

New Analysis of 1977 Wow! Signal Reveals Stronger Cosmic Mystery

Published

on

By

The famous 1977 “Wow!” signal — a mysterious radio burst detected by Ohio’s Big Ear telescope — has been reanalyzed using modern computing techniques. Researchers digitized old telescope records, finding the signal was about four times stronger than first thought, peaking at 250 Janskys. The recalculations also refined its frequency and sky location, ruling …

Continue Reading

Science

Astronomers Capture Sharpest-Ever Solar Flare Images with NSF’s DKIST Telescope

Published

on

By

Astronomers have achieved a major breakthrough by capturing the sharpest images of a solar flare ever recorded, using the National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST). Observed at the hydrogen-alpha wavelength during the decay of an X1.3-class solar flare, the images unveiled hundreds of ultra-fine coronal loops averaging just 48 kilometers…

Continue Reading

Science

James Webb Detects Carbon Dioxide–Dominated Coma in Interstellar Object 3I/ATLAS

Published

on

By

The James Webb Space Telescope observed 3I/ATLAS, the third interstellar object detected in our solar system. Its coma is unusually rich in carbon dioxide with little water or carbon monoxide, suggesting a CO₂-rich core or an insulating crust. Findings raise new questions about its cosmic origin.

Continue Reading

Trending