Connect with us

Published

on

The Major Atmospheric Cherenkov Experiment (MACE) observatory, the world’s highest imaging Cherenkov telescope, has been inaugurated in Hanle, Ladakh, at an elevation surpassing 4,300 metres. This facility is set to advance India’s role in space research and cosmic-ray studies, marking a new milestone in high-energy astrophysics. The observatory aims to explore cosmic phenomena such as supernovae, black holes, and gamma-ray bursts.

Inauguration by Dr Ajit Kumar Mohanty

Dr Ajit Kumar Mohanty, Secretary of the Department of Atomic Energy (DAE) and Chairman of the Atomic Energy Commission, officially inaugurated the MACE observatory. The event, held during the DAE’s Platinum Jubilee celebrations, included the opening of commemorative plaques, highlighting the telescope’s significance in India’s scientific community. According to Dr Mohanty, the observatory’s capabilities will bolster international collaborations and elevate India’s role in multimessenger astronomy.

Indigenous Development by BARC

The Bhabha Atomic Research Centre (BARC) constructed the MACE observatory in collaboration with the Electronics Corporation of India Limited, along with other Indian industry partners. As Asia’s largest imaging Cherenkov telescope, the facility underscores the strength of indigenous engineering and technological capability in India. Dr S M Yusuf, Director of the Physics Group at BARC, emphasized that the MACE telescope would greatly enhance India’s expertise in space and cosmic-ray research.

Future Prospects and Community Involvement

Additional Secretary Ajay Ramesh Sule addressed the local community and students, encouraging them to consider careers in science and technology, especially within the Hanle Dark Sky Reserve (HDSR), where the MACE observatory is located. The event also included the release of a pictorial compilation capturing the journey of the MACE project, along with a felicitation ceremony for Hanle’s village leaders, school headmaster, and lama of the Hanle Gompa, honouring their support for the initiative.

Aiming for Global Research Contributions

The MACE telescope’s advanced imaging capability will contribute to global high-energy gamma-ray observation. It will help in expanding understanding of cosmic phenomena. Dr Mohanty highlighted that this observatory will help align India’s research with international efforts, positioning the nation as a leader in high-energy astrophysics.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


OnePlus 13 Display Features Revealed Ahead of October 31 Launch Date



Aerobic Exercise Improves Cognitive Function in Women Undergoing Chemotherapy

Continue Reading

Science

Climate Satellite MethaneSAT Fails After Just One Year in Orbit

Published

on

By

Climate Satellite MethaneSAT Fails After Just One Year in Orbit

One of the world’s most advanced satellites for detecting methane and other gases that contribute to the warming of the planet has gone dark and stopped communicating with ground-based controllers just over a year after being launched into orbit. Created by the nonprofit Environmental Defense Fund (EDF), the satellite — estimated to cost as much as $88 million — hitched a ride into space on a SpaceX rocket in March 2024. It was charged with monitoring methane leaks from oil and gas operations, and then making the data available to policymakers and scientists through open access. But on June 20, contact with the satellite was lost, and attempts to recover it have failed. EDF officially reported on July 1 that MethaneSAT has lost power and appears unlikely to recover.

MethaneSAT Failure Marks Setback for Climate Transparency Despite Data Gains and Global Support

As per a statement released by EDF, MethaneSAT’s failure came despite multiple recovery attempts. The satellite was constructed to lift the veil off methane’s invisible, weighty impact on global warming. It is nowhere near as common as carbon dioxide, but over a timescale of, say, a century, it is 20 to 30 times more efficient at trapping heat in the atmosphere than carbon dioxide. That makes its emissions a prime target in the effort to minimize the risks of global warming. MethaneSAT was developed to independently corroborate industrial methane reports, especially those from fossil fuel extraction. The loss of the satellite is a remarkable setback for transparency in climate science and monitoring of emissions worldwide.

Yet mission operators are hopeful that data already collected will have far-reaching effects. EDF emphasized that insights from MethaneSAT’s year in orbit will continue to be processed and made public in the coming months. The mission included backing from 10 partners such as Harvard University, the New Zealand Space Agency, BAE Systems, Google, and the Bezos Earth Fund.

Officials called MethaneSAT a bold and needed move to hold our climate accountable. Although the mission was cut short, it signaled one of the largest joint efforts between science, advocacy, and technology to battle climate change. “To succeed in meeting the climate challenge, we need bold action and fearless innovation,” EDF mentioned, describing the satellite as “at the vanguard of science.”
MethaneSAT’s brief history highlights the difficulty — and importance — of deploying space-based instruments to try and combat climate change. As other missions get ready to blaze the same trail, the data and experience this little spacecraft provided will influence the future of Earth observation.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Microsoft Says Xbox Chief Phil Spencer Not Retiring ‘Anytime Soon’ After Rumour Surfaces Amid Layoffs

Continue Reading

Science

New Interstellar Comet 3I/ATLAS Speeds Through Solar System

Published

on

By

New Interstellar Comet 3I/ATLAS Speeds Through Solar System

A newly confirmed interstellar comet is making a rare passage through our solar system — and skywatchers can catch it live online tonight. The object, now called 3I/ATLAS, is just the third interstellar visitor ever detected after the well-known ‘Oumuamua (2017) and 2I/Borisov (2019). The comet was so fresh when first detected on July 1 by the ATLAS telescope in Chile that it hadn’t even been given a name yet; the Minor Planet Center has it listed as “3I,” the “I” standing for interstellar. Tonight’s webcast will kick off at 6 p.m. EDT (2200 GMT) from the Virtual Telescope Project’s virtual observing facilities in Italy.

Interstellar Comet 3I/ATLAS Speeds Toward Sun at 68 km/s, Offers Rare Study Opportunity

As per a report by Space.com, 3I/ATLAS was detected as a faint object displaying subtle cometary features, including a marginal coma and a short tail. Currently located 4.5 astronomical units (AU) from the sun — about 670 million kilometers (416 million miles) — the comet is faint at magnitude 18.8, making it invisible to amateur telescopes. The interstellar object is traveling at an astonishing pace of 68 kilometers per second (152,000 mph) relative to the sun, but NASA officials say it poses no danger to Earth.

It was imaged by the Virtual Telescope Project on July 2, showing the comet as a point of light within the trailing background stars — a sure indication that it is indeed moving through space. 3I/ATLAS should brighten a little as it approaches the sun, particularly when it gets closest, or its perihelion, on Oct. 30, when it swings within 1.4 astronomical units of the sun or Mars’ orbit.

The close pass by this interstellar visitor is a rare chance for astronomers to study the materials and dynamics outside our solar system. 3I/ATLAS, which is racing along at a frenetic pace on an elliptical orbit, may also support research into how these objects change as they sit in different stellar environments.

After disappearing behind the sun in late fall, 3I/ATLAS is projected to return to observational reach in early December. Researchers anticipate further analysis then, expanding our understanding of these rare visitors that traverse the galaxy — and occasionally, pass through our celestial neighborhood.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


The Hunt: Rajiv Gandhi Assassination Now Available For Streaming on SonyLIV

Continue Reading

Science

Quantum Breakthrough: CSIRO Uses 5-Qubit Model to Enhance Chip Design

Published

on

By

Quantum Breakthrough: CSIRO Uses 5-Qubit Model to Enhance Chip Design

Researchers at Australia’s CSIRO have achieved a world-first demonstration of quantum machine learning in semiconductor fabrication. The quantum-enhanced model outperformed conventional AI methods and could reshape how microchips are designed. The team focused on modeling a crucial—but hard to predict—property called “Ohmic contact” resistance, which measures how easily current flows where metal meets a semiconductor.

They analysed 159 experimental samples from advanced gallium nitride (GaN) transistors (known for high power/high-frequency performance). By combining a quantum processing layer with a final classical regression step, the model extracted subtle patterns that traditional approaches had missed.

Tackling a difficult design problem

According to the study, the CSIRO researchers first encoded many fabrication variables (like gas mixtures and annealing times) per device and used principal component analysis (PCA) to shrink 37 parameters down to the five most important ones. Professor Muhammad Usman – who led the study – explains they did this because “the quantum computers that we currently have very limited capabilities”.

Classical machine learning, by contrast, can struggle when data are scarce or relationships are nonlinear. By focusing on these key variables, the team made the problem manageable for today’s quantum hardware.

A quantum kernel approach

To model the data, the team built a custom Quantum Kernel-Aligned Regressor (QKAR) architecture. Each sample’s five key parameters were mapped into a five-qubit quantum state (using a Pauli-Z feature map), enabling a quantum kernel layer to capture complex correlations.

The output of this quantum layer was then fed into a standard learning algorithm that identified which manufacturing parameters mattered most. As Usman says, this combined quantum–classical model pinpoints which fabrication steps to tune for optimal device performance.

In tests, the QKAR model beat seven top classical algorithms on the same task. It required only five qubits, making it feasible on today’s quantum machines. CSIRO’s Dr. Zeheng Wang notes that the quantum method found patterns classical models might miss in high-dimensional, small-data problems.

To validate the approach, the team fabricated new GaN devices using the model’s guidance; these chips showed improved performance. This confirmed that the quantum-assisted design generalized beyond its training data.

Continue Reading

Trending