Spoiler Alert: The low-speed function test is short and sweet but a milestone nonetheless. Solar EV startup Aptera Motors has finally given the public a look at its “PI-2” production-intent vehicle, which will now be used for real-world validation and testing en route to production… hopefully.
Aptera’s most recent milestone is a welcomed one for fans of the startup, many of whom are investors with a stake in its success in trying to bring bonafide solar EVs to the masses.
The company has been (literally and figuratively) gearing up for production-intent builds for months now, and the first “PI” vehicle started to come to fruition last April when Aptera’s supply partner CPC Group shipped the first body over from Italy.
While the startup’s co-founders and co-CEOs worked to secure additional funding to reach scaled vehicle production, the Aptera team has been hard at work assembling production-intent builds that will be used for testing and validation.
The “PI-2,” Aptera’s first vehicle to feature its production components, started to come together physically in late August after the startup received a shipment of bodies in carbon (BinCs). At the time, three BinCs had been delivered safely to Aptera’s Carlsbad headquarters to support production intent builds 2, 3, and 4.
PI-2 is the first to roll out of the shop in Southern California and recently completed its first low-speed validation test, which you can view in the video below.
Source: Aptera Motors/YouTube
The PI2 vehicle inches Aptera closer to SEV production
As it does every month, Aptera shared its latest progress update, and it’s one of the more exciting ones we’ve seen in a while. PI-2 was successfully assembled and driven around the Aptera building at low speeds with its design team looking on.
She may look a little rough on the outside, but the inner workings should be the proper focus when it comes to Aptera’s initial production-intent vehicle. The cosmetic stuff will come later. Per Aptera:
This landmark vehicle incorporates Aptera’s recently adopted Vitesco Technologies EMR3 drivetrain, the in-board motor solution announced earlier this year. This initial test drive has validated Aptera’s proprietary battery pack, which is now functioning with the EMR3 powertrain—a critical combination that is now being tested together in real-world conditions. For the first time, Aptera’s production composite body structure, also known as its Body in Carbon or BinC, is spinning its production drivetrain under code developed in-house with power from a proprietary battery pack, a testament to the company’s engineering agility and innovative manufacturing approach.
It’s also a bit strange to see a production-intent build of a solar electric vehicle without any solar panels. Still, Aptera shared that technology will be implemented next alongside the SEV’s production-intent thermal management system and exterior surfaces.
When complete, PI-2 will undergo high-speed track testing to validate its general performance characteristics and core efficiency figures, including watt-hours per mile, solar charging rates, and estimated battery range. Those are some specs we are dying to learn more about.
As we’ve pointed out in the past, Aptera still has a long road ahead of it before it can scale to mass production and deliver solar electric vehicles to its nearly 50,000 current reservation holders. It still needs a lot of funding to get there, well beyond the $60 million capital raise it’s currently attempting with the help of US Capital Global.
Right here and now, however, Aptera’s development process remains on track, and its latest milestone should not be overlooked. We love to see physical evidence of its progress and look forward to the implementation of solar technology to grasp what these unique, sustainable vehicles are truly capable of.
You can view the full October update from Aptera, which includes test footage of the production-intent vehicle below:
FTC: We use income earning auto affiliate links.More.
After a month off trying to wrap our heads around all the chaos surrounding EVs, solar, and everything else in Washington, we’re back with the biggest EV news stories of the day from Tesla, Ford, Volvo, and everyone else on today’s hiatus-busting episode of Quick Charge!
It just gets worse and worse for the Tesla true believers – especially those willing to put their money where Elon’s mouth is! One believer is set to lose nearly $50,000 betting on Tesla’s ability to deliver a Robotaxi service by the end of June (didn’t happen), and the controversial CEO’s most recent spat with President Trump had TSLA down nearly 5% in pre-morning trading.
New episodes of Quick Charge are recorded, usually, Monday through Thursday (and sometimes Sunday). We’ll be posting bonus audio content from time to time as well, so be sure to follow and subscribe so you don’t miss a minute of Electrek’s high-voltage daily news.
Advertisement – scroll for more content
Got news? Let us know! Drop us a line at tips@electrek.co. You can also rate us on Apple Podcasts and Spotify, or recommend us in Overcast to help more people discover the show.
If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.
Hyundai is getting ready to shake things up. A new electric crossover SUV, likely the Hyundai IONIQ 2, is set to debut in the coming months. It will sit below the Kona Electric as Hyundai expands its entry-level EV lineup.
Is Hyundai launching the IONIQ 2 in 2026?
After launching the Inster late last year, Hyundai is already preparing to introduce a new entry-level EV in Europe.
Xavier Martinet, President and CEO of Hyundai Europe, confirmed that the new EV will be revealed “in the next few months.” It will be built in Europe and scheduled to go on sale in mid-2026.
Hyundai’s new electric crossover is expected to be a twin to the Kia EV2, which will likely arrive just ahead of it next year.
Advertisement – scroll for more content
It will be underpinned by the same E-GMP platform, which powers all IONIQ and Kia EV models (EV3, EV4, EV5, EV6, and EV9).
Like the Kia EV3, it will likely be available with either a 58.3 kWh or 81.4 kWh battery pack option. The former provides a WLTP range of 267 miles while the latter is rated with up to 372 miles. All trims are powered by a single electric motor at the front, producing 201 hp and 209 lb-ft of torque.
Kia EV2 Concept (Source: Kia)
Although it may share the same underpinnings as the EV2, Hyundai’s new entry-level EV will feature an advanced new software and infotainment system.
According to Autocar, the interior will represent a “step change” in terms of usability and features. The new system enables new functions, such as ambient lighting and sounds that adjust depending on the drive mode.
Hyundai E&E tech platform powered by Pleos (Source: Hyundai)
It’s expected to showcase Hyundai’s powerful new Pleos software and infotainment system. As an end-to-end software platform, Pleos connects everything from the infotainment system (Pleos Connect) to the Vehicle Operating System (OS) and the cloud.
Pleos is set to power Hyundai’s upcoming software-defined vehicles (SDVs) with new features like autonomous driving and real-time data analysis.
Hyundai’s next-gen infotainment system powered by Pleos (Source: Hyundai)
As an Android-based system, Pleos Connect features a “smartphone-like UI” with new functions including multi-window viewing and an AI voice assistant.
The new electric crossover is expected to start at around €30,000 ($35,400), or slightly less than the Kia EV3, priced from €35,990 ($42,500). It will sit between the Inster and Kona Electric in Hyundai’s lineup.
Hyundai said that it would launch the first EV with its next-gen infotainment system in Q2 2026. Will it be the IONIQ 2? Hyundai is expected to unveil the new entry-level EV at IAA Mobility in September. Stay tuned for more info. We’ll keep you updated with the latest.
FTC: We use income earning auto affiliate links.More.
Tesla has unveiled its lithium-iron-phosphate (LFP) battery cell factory in Nevada and claims that it is nearly ready to start production.
Like several other automakers using LFP cells, Tesla relies heavily on Chinese manufacturers for its battery cell supply.
Tesla’s cheapest electric vehicles all utilize LFP cells, and its entire range of energy storage products, Megapacks and Powerwalls, also employ the more affordable LFP cell chemistry from Chinese manufacturers.
This reliance on Chinese manufacturers is less than ideal and particularly complicated for US automakers and battery pack manufacturers like Tesla, amid an ongoing trade war between the US and virtually the entire world, including China.
Advertisement – scroll for more content
As of last year, a 25% tariff already applied to battery cells from China, but this increased to more than 80% under Trump before he paused some tariffs on China. It remains unclear where they will end up by the time negotiations are complete and the trade war is resolved, but many expect it to be higher.
The automaker had secured older manufacturing equipment from one of its battery cell suppliers, CATL, and planned to deploy it in the US for small-scale production.
Tesla has now released new images of the factory in Nevada and claimed that it is “nearing completion”:
Here are a few images from inside the factory (via Tesla):
Previous reporting stated that Tesla aims to produce about 10 GWh of LFP battery cells per year at the new factory.
The cells are expected to be used in Tesla’s Megapack, produced in the US. Tesla currently has a capacity to produce 40 GWh of Megapacks annually at its factory in California. The company is also working on a new Megapack factory in Texas.
It’s nice to see this in the US. LFP was a US/Canada invention, with Arumugam Manthiram and John B. Goodenough doing much of the early work, and researchers in Quebec making several contributions to help with commercialization.
But China saw the potential early and invested heavily in volume manufacturing of LFP cells and it now dominates the market.
Tesla is now producing most of its vehicles with LFP cells and all its stationary energy storage products.
It makes sense to invest in your own production. However, Tesla is unlikely to catch up to BYD and CATL, which dominate LFP cell production.
The move will help Tesla avoid tariffs on a small percentage of its Megapacks produced in the US. Ford’s effort is more ambitious.
It’s worth noting that both Ford’s and Tesla’s LFP plants were planned before Trump’s tariffs, which have had limited success in bringing manufacturing back to the US.
FTC: We use income earning auto affiliate links.More.