Connect with us

Published

on

Physicists at CERN have made a significant step forward in the challenge of transporting antimatter. In a breakthrough experiment, the team demonstrated the ability to move unstable particles using a specially designed trap. This marks the first successful test of transporting particles across CERN’s facilities, which could lay the foundation for shipping antimatter to other research laboratories in the future.

BASE-STEP Trap Used for First Test

The experiment, conducted in late October, involved the movement of 70 protons – subatomic particles that share similar challenges to antimatter in terms of handling and storage. The study from CERN revealed that using the BASE-STEP trap, the particles were placed in a vacuum chamber and transported on a truck across CERN’s premises without being disrupted. The report further mentioned that the success of the test was seen as a promising indication that a similar approach could be applied to antiprotons, the antimatter counterpart to protons, which are notoriously difficult to contain due to their tendency to annihilate upon contact with matter.

Future Plans for Antimatter Transport

Christian Smorra, a CERN physicist leading the BASE-STEP project, stated in a statement that while the test was conducted with protons, the process is expected to work with antiprotons as well, though additional precautions will be needed. These include a more robust vacuum chamber to ensure the antimatter remains stable during transport.

Antimatter is typically produced at CERN’s Antiproton Decelerator (AD) facility and stored in magnetic fields to prevent it from touching matter. The BASE experiment has already proven capable of storing antimatter for extended periods, but transporting it to different labs has posed a significant challenge. With the development of BASE-STEP, physicists now have a portable version of this technology, designed to protect the particles from the jostling they would experience during transport.

Looking Ahead to 2025

The next stage for CERN’s research team is to transport antiprotons in early 2025, with plans for further refinements to the technology. Smorra mentioned that the goal is to eventually enable antimatter transport across Europe to specialised laboratories, enhancing the precision of ongoing studies.

The success of the trial has opened up the potential for even deeper investigations into the properties of antimatter, with scientists hoping to gain a clearer understanding of its fundamental nature.

Continue Reading

Science

Amber Found in Antarctica for the First Time

Published

on

By

Amber Found in Antarctica for the First Time

The discovery of amber in Antarctica has been reported for the first time, as detailed in a recent study published in Antarctic Science. Dr. Johann Klages from the University of Bremen, alongside a team of researchers, uncovered this specimen in sediment cores from the Pine Island trough in West Antarctica. This ancient amber, originating from approximately 83 to 92 million years ago during the mid-Cretaceous period, offers valuable insights into prehistoric environmental conditions near the South Pole.

Unveiling the First Antarctic Amber

The study was published in Antarctic Science journal and reveals that the amber, known as Pine Island amber, was retrieved using the MARUM-MeBo70 drill rig during a 2017 expedition on the RV Polarstern vessel. This mid-Cretaceous resin is considered a significant breakthrough as it suggests that a swampy temperate rainforest, dominated by coniferous trees, thrived in the region during a much warmer period in Earth’s history. According to Dr. Henny Gerschel from the Saxon State Office for the Environment, Agriculture and Geology, the amber likely contains tiny fragments of tree bark, preserved through micro-inclusions. Its solid, translucent quality indicates that it was buried close to the surface, protecting it from thermal degradation.

Insights into Prehistoric Forest Ecosystems

The presence of pathological resin flow within the amber offers clues into the defence mechanisms used by ancient trees against environmental stressors like parasites or wildfires. “This discovery hints at a much richer forest ecosystem near the South Pole during the mid-Cretaceous,” Dr. Klages explained, noting the resin’s defensive chemical and physical properties that protected it from insect attacks and infections.

Reconstructing Ancient Antarctic Environments

The amber’s discovery marks a key step in reconstructing ancient polar climates, supporting the idea that temperate forests once spanned across all continents. Researchers aim to explore further by analysing whether signs of past life are preserved in the amber. This study, beyond unearthing Antarctic amber, opens new opportunities to deepen understanding of Earth’s climatic past and the adaptability of prehistoric ecosystems.

Continue Reading

Science

An Asteroid Burned Up Over California Just Hours After Being Spotted

Published

on

By

An Asteroid Burned Up Over California Just Hours After Being Spotted

An asteroid measuring roughly one metre in diameter impacted Earth’s atmosphere on October 22, 2024, only hours after its initial detection. Discovered by the Asteroid Terrestrial-impact Last Alert System (ATLAS) in Hawaii, the object — named 2024 UQ — approached the planet undetected by global impact monitoring systems before disintegrating over the Pacific Ocean off California’s coast. The European Space Agency’s (ESA) Near-Earth Object Coordination Centre later confirmed the event in its November newsletter, reporting that tracking data for the asteroid did not reach monitoring systems until after the impact had already taken place.

Limited Tracking Data Due to Detection Timing

According to ESA’s November newsletter, 2024 UQ had been picked up by ATLAS’ sky-monitoring telescopes. However, the asteroid was only identified as a moving object minutes before it entered Earth’s atmosphere due to its location between two adjacent sky fields in the survey system. This detection delay meant that essential tracking data was delayed and unavailable for impact monitoring centres, which track potential near-Earth object (NEO) threats. Confirmation of the asteroid’s impact was made possible by data from the National Oceanic and Atmospheric Administration’s (NOAA) GOES weather satellites and NASA’s Catalina Sky Survey, which recorded flashes that confirmed the entry of 2024 UQ.

Third Imminent Impact Event in 2024

This incident marked the third imminent impactor event in 2024. In January, a similar object designated as 2024 BX1 burned up over Berlin, while another asteroid, 2024 RW1, exploded above the Philippines in September, with footage of the fireball captured by local observers. These instances underscore the rarity yet growing frequency of small asteroids entering Earth’s atmosphere undetected.

Global Efforts to Monitor Near-Earth Objects

Planetary defence remains a priority as space agencies worldwide develop systems to track potentially hazardous objects. In addition to projects like ATLAS and the Catalina Sky Survey, NASA’s upcoming NEO Surveyor mission aims to use infrared technology to enhance detection capabilities. ESA’s NEO Coordination Centre continues its work on tracking near-Earth objects, while deflection experiments, including NASA’s DART mission in 2022, are also underway to test potential asteroid redirection strategies.

Continue Reading

Science

NASA’s Swift Discovers Twin Black Holes Disturbing Galactic Gas Cloud

Published

on

By

NASA's Swift Discovers Twin Black Holes Disturbing Galactic Gas Cloud

NASA’s Neil Gehrels Swift Observatory has detected a unique signal from two enormous black holes, locked in a cosmic dance that disturbs a dense gas cloud at the centre of a distant galaxy. The phenomenon, known as AT 2021hdr, has sparked considerable interest among astronomers, with researchers observing an unusual cycle of gas disruptions as the black holes orbit one another.

This gas-churning event was first documented in March 2021 by the Zwicky Transient Facility (ZTF) at the Palomar Observatory, California. Led by Dr Lorena Hernández-García, astrophysicist at the Millennium Institute of Astrophysics and the University of Valparaíso in Chile, a study into AT 2021hdr reveals a recurring flare, a pattern that scientists suggest results from the black holes’ gravitational influence on a massive gas cloud. The findings, which appear in the journal Astronomy and Astrophysics, describe how these giant objects tug and heat the gas, triggering light oscillations across different wavelengths.

Uncovering the Source of AT 2021hdr

Located in galaxy 2MASX J21240027+3409114, about 1 billion light-years away in the Cygnus constellation, these black holes together possess a mass 40 million times that of the Sun. Their close proximity—just 16 billion miles apart—produces observable light variations every 130 days. This frequency, scientists predict, could eventually culminate in the black holes’ merger in approximately 70,000 years.

Initially considered a supernova, the recurring nature of these outbursts led astronomers to reevaluate their assumptions. Dr Alejandra Muñoz-Arancibia, a researcher with ALeRCE and the University of Chile, noted that frequent observations over 2022 helped to develop a more precise understanding of this phenomenon. Since November 2022, Swift’s ultraviolet and X-ray observations have aligned with ZTF’s findings in visible light, reinforcing the theory of an orbiting gas cloud undergoing a cyclical disturbance by the black holes’ gravitational forces.

Future Studies and Implications

This discovery offers a unique perspective on supermassive black hole interactions. Continued studies of AT 2021hdr and its host galaxy—currently merging with another—are expected to provide new insights into galactic evolution and black hole behaviour.

Continue Reading

Trending