Connect with us

Published

on

A recent discovery at the Indian Institute of Science (IISc) offers an energy-efficient method to achieve glassy transformations in indium selenide, a material that could change the face of data storage technology. The study was conducted in a collaboration between the University of Pennsylvania and the Massachusetts Institute of Technology (MIT). The research demonstrates that continuous electric current can transform the crystalline structure of indium selenide into glass, using a billion times less energy than the traditional melt-quench process.

Unusual Transformation Mechanism Revealed

The study, published on November 6, 2024, in Nature, details how this crystalline-to-glass transformation in indium selenide occurs. The study claims that unlike conventional processes that require high temperatures and sudden cooling, researchers found that mechanical shocks triggered by continuous electric currents achieved the same result. This discovery eliminates the need for the energy-intensive heating and rapid cooling stages typically used to create glassy phases in materials. Gaurav Modi, former PhD student at Penn Engineering, expressed initial surprise at the finding, noting that a continuous current alone disrupted the material’s structure.

Collaborative Microscale Analysis

IISc’s in situ microscopy tools were used extensively to observe the transformation at both atomic and micrometer scales. Assistant Professor Pavan Nukala from IISc’s Centre for Nano Science and Engineering, with PhD student Shubham Parate, collaborated with Penn Engineering’s Srinivasa Ramanujan Distinguished Scholar, Ritesh Agarwal, to investigate the transformation. By passing electric current through indium selenide, the team discovered that the 2D material’s layers moved against each other, generating small-scale electrical and mechanical shocks similar to seismic activity, ultimately leading to glass formation.

Future Implications for Phase-Change Memory

According to Agarwal, energy requirements have been a limiting factor for phase-change memory devices in widespread applications. This discovery, therefore, has significant implications for the efficiency of data storage technologies in computers and mobile devices. Nukala has indicated that the next steps will involve efforts to integrate these materials with CMOS technology, potentially paving the way for more sustainable memory solutions.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Gemini App for iPhone With Gemini Live Capability Appears in the App Store for Some Users



Realme 14 Pro Lite Said to Be in the Works, Colour Options, RAM and Storage Configurations Tipped

Continue Reading

Science

Physicists Push Superconducting Diodes to Higher Temperatures

Published

on

By

Researchers in China have demonstrated the first high-temperature superconducting diode, operating above liquid nitrogen temperatures without magnetic fields. Using cuprate materials, the device enables clean supercurrent flow and could reduce noise in quantum computers. The breakthrough marks an important step toward practical superconducting electronics and more sta…

Continue Reading

Science

NASA’s Perseverance Rover Poised for Years of Exploration Across Jezero Crater

Published

on

By

NASA’s Perseverance rover, in excellent condition, is ready for long-term Mars exploration. Using autonomous driving, it has travelled nearly 25 miles, studied olivine-rich rocks, and collected samples revealing potential signs of past microbial life. The rover now heads to Lac de Charmes for further scientific investigation, promising years of discoveries about Mar…

Continue Reading

Science

James Webb Confirms First Runaway Supermassive Black Hole Rocking Through Space

Published

on

By

The James Webb Space Telescope has confirmed the first runaway supermassive black hole, moving at 2.2 million mph through the Cosmic Owl galaxies. Pushing a galaxy-sized shockwave and leaving a long trail of star-forming gas, this discovery confirms long-standing theories about black hole ejections and opens the door to finding more cosmic speedsters.

Continue Reading

Trending