Connect with us

Published

on

A recent study reveals how skateboarders can use mathematical insights to increase their speed and height on half-pipes. Florian Kogelbauer, a mathematician from ETH Zurich, and his research team have examined how specific movements impact a skateboarder’s performance on U-shaped ramps. By alternating between crouching and standing in certain areas, skaters can generate extra momentum, leading to higher jumps and faster speeds. This research, published in Physical Review Research, could lead to more efficient techniques for skaters aiming to improve their skills.

Modelling Momentum on Half-Pipes

The research was published in American Physical Society Journal. The technique of “pumping,” or alternating between crouching and standing, is essential for building speed on half-pipes. Kogelbauer’s team created a model to show how the body’s centre of mass affects movement on a ramp, much like the mechanics of a swing. In their calculations, they found that crouching while moving downhill and standing while moving uphill helps skaters gain height more effectively. This rhythm, the team suggests, could help skaters reach higher elevations on the ramp in fewer motions.

Testing the Theory with Real Skaters

To test the model’s validity, researchers observed two skateboarders as they navigated a half-pipe. They were asked to reach a specific height as quickly as possible. Video analysis revealed that the more experienced skater naturally followed the model’s suggested pattern, reaching the target height with fewer motions. The less experienced skater, who did not follow the pattern as precisely, required more time to reach the same height. This contrast suggests that experienced skaters intuitively apply these principles for better performance.

Broader Applications Beyond Skateboarding

According to Sorina Lupu, an engineer at the California Institute of Technology, this simplified model may also have applications in robotics. By demonstrating how minimal adjustments in body position can impact speed and height, this study offers insights that could make robotic movement more efficient. For engineers, this research indicates that straightforward models of human movement could be used to enhance robotic performance, providing an alternative to complex machine-learning models often used in robotics.

Continue Reading

Science

Massive Fireball Streaks Across Southern Japan, Lighting Up the Night Sky

Published

on

By

On Aug. 19, residents of southern Japan witnessed a brilliant fireball streaking across the night sky, lighting up cities from Kagoshima to Osaka. The meteor appeared at 11:08 p.m. local time, glowing green-blue with flashes so bright they rivaled the moon before bursting into orange-red fragments above the Pacific Ocean. Security and dashcam cameras captured the dazz…

Continue Reading

Science

Ursa Major III May Be a Star Cluster, Not a Dark-Matter Dwarf Galaxy

Published

on

By

Astronomers have long thought Ursa Major III, also called UNIONS 1, was a dark-matter-packed dwarf galaxy. But new simulations suggest it may instead be a compact star cluster bound by black holes and neutron stars. Located 30,000 light-years away, Ursa Major III contains just ~60 visible stars yet shows puzzlingly high stellar velocities. The new analysis explains th…

Continue Reading

Science

James Webb Telescope Discovers Tiny New Moon Orbiting Uranus

Published

on

By

A team from the Southwest Research Institute has discovered a tiny new moon orbiting Uranus using NASA’s James Webb Space Telescope. The moon, called S/2025 U1, is just 6 miles (10 kilometers) wide, too small for Voyager 2 to detect during its 1986 flyby. This discovery brings Uranus’s total known moons to 29, with S/2025 U1 orbiting 35,000 miles from the planet…

Continue Reading

Trending