Connect with us

Published

on

The discovery of amber in Antarctica has been reported for the first time, as detailed in a recent study published in Antarctic Science. Dr. Johann Klages from the University of Bremen, alongside a team of researchers, uncovered this specimen in sediment cores from the Pine Island trough in West Antarctica. This ancient amber, originating from approximately 83 to 92 million years ago during the mid-Cretaceous period, offers valuable insights into prehistoric environmental conditions near the South Pole.

Unveiling the First Antarctic Amber

The study was published in Antarctic Science journal and reveals that the amber, known as Pine Island amber, was retrieved using the MARUM-MeBo70 drill rig during a 2017 expedition on the RV Polarstern vessel. This mid-Cretaceous resin is considered a significant breakthrough as it suggests that a swampy temperate rainforest, dominated by coniferous trees, thrived in the region during a much warmer period in Earth’s history. According to Dr. Henny Gerschel from the Saxon State Office for the Environment, Agriculture and Geology, the amber likely contains tiny fragments of tree bark, preserved through micro-inclusions. Its solid, translucent quality indicates that it was buried close to the surface, protecting it from thermal degradation.

Insights into Prehistoric Forest Ecosystems

The presence of pathological resin flow within the amber offers clues into the defence mechanisms used by ancient trees against environmental stressors like parasites or wildfires. “This discovery hints at a much richer forest ecosystem near the South Pole during the mid-Cretaceous,” Dr. Klages explained, noting the resin’s defensive chemical and physical properties that protected it from insect attacks and infections.

Reconstructing Ancient Antarctic Environments

The amber’s discovery marks a key step in reconstructing ancient polar climates, supporting the idea that temperate forests once spanned across all continents. Researchers aim to explore further by analysing whether signs of past life are preserved in the amber. This study, beyond unearthing Antarctic amber, opens new opportunities to deepen understanding of Earth’s climatic past and the adaptability of prehistoric ecosystems.

Continue Reading

Science

Scientists Find Wastewater Bacteria That Break Down PET Plastic

Published

on

By

Scientists Find Wastewater Bacteria That Break Down PET Plastic

Our environment continues to grapple with plastic pollution, with microplastics infiltrating the air, food, and water. Scientists are actively seeking methods to break down this persistent material. A new development has identified bacteria in wastewater that can degrade polyethylene terephthalate (PET), a plastic widely used in packaging and textiles. The discovery has raised hopes of reducing PET waste, which contributes significantly to microplastic contamination in water bodies. Research efforts are now focused on understanding and enhancing the plastic-degrading ability of these microbes.

Microbes Capable of Breaking Down PET Identified

According to a study published in Environmental Science and Technology, bacteria of the Comamonas genus have been found to degrade PET. Comamonas bacteria, commonly found in wastewater, were already known to grow on plastics in aquatic environments. This prompted Dr. Ludmilla Aristilde, an environmental biochemist at Northwestern University, and her team to investigate whether these microbes consume plastic as a source of energy. The study revealed that Comamonas testosteroni could break down PET, leading to the release of nano-sized plastic particles into water.

Enzyme Responsible for PET Breakdown Identified

As per reports, researchers observed the breakdown of PET after exposing it to C. testosteroni in a controlled laboratory setting for a month. Scanning electron microscope images showed that the bacteria had significantly altered the plastic’s surface, causing the release of plastic nanoparticles. Genetic analysis identified a specific enzyme responsible for breaking down PET. Further testing confirmed its role when bacteria engineered without the gene for this enzyme were unable to degrade plastic, while non-plastic-consuming bacteria equipped with the gene could digest PET.

Challenges and Future Research in Plastic Degradation

Dr. Ren Wei, a biochemist at the University of Greifswald, expressed skepticism to Science News Explore about the practical application of this discovery, stating in reports that the degradation process is too slow to significantly reduce global plastic pollution. On the contrary, Dr. Jay Mellies, a microbiologist at Reed College, viewed the findings as promising, emphasiaing that every viable method should be explored. Dr. Victor Gambarini, a microbiologist at the University of Auckland, echoed this sentiment, suggesting that further research should focus on identifying or engineering enzymes capable of degrading PET more efficiently. Efforts are now being directed toward improving the enzyme’s efficiency to make microbial plastic degradation a practical solution.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Science

NASA’s SPHEREx Telescope Launching Aboard SpaceX Falcon 9 to Explore Cosmic Evolution

Published

on

By

NASA’s SPHEREx Telescope Launching Aboard SpaceX Falcon 9 to Explore Cosmic Evolution

NASA’s latest infrared space telescope, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer), is set for launch on 28th February. The mission, valued at $488 million, will take off from Vandenberg Space Force Base in California aboard a SpaceX Falcon 9 rocket. Designed to scan the entire sky in infrared light, it will collect data from over 450 million galaxies and 100 million stars in the Milky Way. The telescope’s observations will focus on regions of the universe that are typically too distant or faint for conventional telescopes.

Scientific Objectives

According to NASA, the primary aim of SPHEREx is to enhance understanding of cosmic inflation, the rapid expansion of the universe that occurred within the first second following the Big Bang. By mapping the large-scale structure of the cosmos, the telescope will provide insight into how galaxies formed and evolved. Scientists also anticipate that its data will help track the presence and distribution of icy molecules in interstellar space, shedding light on the origins of water and essential organic compounds required for life.

Technical Capabilities

As per NASA’s Jet Propulsion Laboratory (JPL), SPHEREx weighs approximately 500 kilograms and operates on 270 to 300 watts of power. It is fitted with a spectrophotometer capable of detecting 102 different wavelengths of light, which allows it to identify unique chemical signatures of molecules across space. James Fanson, Project Manager at JPL, told NPR that unexpected discoveries are likely to emerge from the mission’s data.

Accompanying Mission

As reported, SPHEREx will not be the sole payload on this launch. It will share the Falcon 9 with PUNCH (Polarimeter to Unify the Corona and Heliosphere), a NASA mission consisting of four satellites that will examine the sun’s outer atmosphere and solar wind dynamics. Together, these missions aim to deepen scientific knowledge of both the distant universe and the immediate solar environment.

Continue Reading

Science

New Study Suggests Dogs May Have Domesticated Themselves for Food

Published

on

By

New Study Suggests Dogs May Have Domesticated Themselves for Food

The origins of dog domestication have been a topic of debate among scientists, with theories suggesting various evolutionary processes led to the transformation of wolves into the domestic dogs seen today. A new study has indicated that early wolves may have chosen to stay near humans due to the availability of food scraps, potentially leading to their domestication over thousands of years. The findings support the idea that self-domestication was possible through natural selection, as wolves that were more tolerant of human presence may have had better access to resources and, in turn, passed on these traits to their offspring.

Wolves and Their Path to Domestication

According to the study published in Proceedings of the Royal Society B, the first phase of dog domestication is believed to have taken place between 30,000 and 15,000 years ago. This period is thought to have been influenced primarily by natural selection rather than human intervention. Researchers suggest that wolves with a less aggressive temperament may have been more likely to stay near human settlements, where food was more accessible. Over time, these wolves may have selectively bred with others that exhibited similar traits, gradually leading to the emergence of early domesticated dogs.

The Role of Natural Selection

In an effort to address concerns regarding the timeframe of domestication, researchers used statistical models to determine whether natural selection alone could have driven this process. As per the findings, domestication through self-selection was plausible if two conditions were met: wolves had to opt for a human-proximate lifestyle due to consistent food availability, and they had to choose mates with a comparable level of tameness. Alex Capaldi, a mathematician and statistician at James Madison University, explained to Live Science that if both conditions were fulfilled, the timeline for self-domestication became feasible despite previous skepticism regarding the speed of such evolutionary changes.

Similar Patterns Observed in Other Animals

The study draws parallels with cat domestication, where felines are believed to have settled near human farming communities around 10,000 years ago. In exchange for hunting rodents, they gained access to human food resources, leading to a mutually beneficial relationship. Scientists suggest that understanding how domestication occurred in dogs may provide further insights into human-animal interactions throughout history, as dogs played a significant role in early human societies by assisting in hunting and herding.

Unanswered Questions in Dog Evolution

While the model presents a plausible explanation, researchers acknowledge that it does not definitively prove how domestication occurred. The study highlights self-domestication as a possibility rather than a confirmed mechanism. The debate over whether human intervention or natural selection played a greater role continues, with further research needed to uncover definitive answers. However, the findings contribute to a broader understanding of early human-animal relationships and how evolutionary forces shaped them.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Anthropic Releases Claude 3.7 Sonnet AI Model With Reasoning Capabilities, Introduces Claude Code



Google’s AI Overviews Erode the Internet, US EdTech Firm Chegg Says in Lawsuit

Continue Reading

Trending