Connect with us

Published

on

A faint electric field has been detected in Earth’s atmosphere, confirming a theory that scientists have held for decades. This ambipolar electric field, though weak at just 0.55 volts, could play a vital role in shaping Earth’s atmospheric evolution and its ability to support life, according to recent findings. Glyn Collinson, an atmospheric scientist at NASA’s Goddard Space Flight Center, led the Endurance rocket mission, which successfully measured this field in May 2022 above Svalbard, Norway. Collinson has described this field as a “planetary-energy field” that had eluded scientific measurement until now.

How the Ambipolar Field Affects Earth’s Atmosphere

The presence of this field is thought to explain a phenomenon observed decades ago—the polar wind. When sunlight strikes atoms in the upper atmosphere, it can cause negatively charged electrons to break free and drift into space, while the heavier, positively charged oxygen ions remain. To maintain an electrically neutral atmosphere, a faint electric field forms, tying these particles together and preventing electrons from escaping. This weak field has been shown to provide energy to lighter ions, such as hydrogen, enabling them to break free from Earth’s gravity and contribute to the polar wind.

This ambipolar electric field could have implications for planetary habitability. David Brain, a planetary scientist at the University of Colorado Boulder, noted that understanding how such fields vary across planets could shed light on why Earth has remained habitable compared to planets like Mars and Venus. Although both Mars and Venus have electric fields, the absence of a global magnetic field on those planets allowed more of their atmospheres to escape into space, potentially altering their climates significantly.

Further Research Planned

NASA has recently approved a follow-up mission with a rocket named Resolute, expected to launch soon. Collinson believes that continued investigation into planetary electric fields may help answer fundamental questions about why Earth supports life while other planets do not.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Dying Light 2, Like a Dragon: Ishin!, GTA 5 and More Join PS Plus Game Catalog in November



The Rana Daggubati Show to Premiere on Prime Video on November 23

Continue Reading

Science

Sun Unleash a 600,000-Mile Filament in Fiery Eruption

Published

on

By

Sun Unleash a 600,000-Mile Filament in Fiery Eruption

A stunning solar eruption captured on video on the night of May 12-13 has revealed a 600,000-mile-long filament blasting away from the sun’s northern hemisphere. The outburst occurred around 8 p.m. EDT (0000 GMT) and spanned a distance more than twice that between Earth and the moon. A massive solar filament suspended above the sun’s surface became unstable and erupted, blasting a CME into space along with a cloud of plasma and magnetic energy. Preliminary models show Earth is nowhere in the firing range of this fiery ejection, but researchers are still watching the phenomenon closely.

Sun’s 600,000-Mile-Long ‘Angel-Wing’ Eruption Stuns Skywatchers, Signals Rising Solar Activity

As per the Space.com report, the eruption originated from a filament structure composed of dense, cooler solar plasma held aloft by magnetic fields. These structures often appear as dark ribbons across the sun’s disk and can become unstable without warning. Solar observers noted that this latest eruption dwarfed similar recent events, both in scale and intensity. Aurora chaser Jure Atanackov remarked that the CME from the blast was among the most spectacular seen this year, although fortunately, it is headed north and will miss Earth.

The event, dubbed the “angel-wing” or “bird-wing” eruption by observers online, was widely shared among solar watchers. Vincent Ledvina, another aurora chaser, noted its incredible visual impact, describing it as a sight worth watching on loop. The eruption is, in fact, so long, by more than a million kilometres, that it is of scientific interest and visually striking as well. Geomagnetic storms resulting from this kind of CME can affect satellites, communication systems, and even Earth.

Although it foreshadows the unpredictable nature of our host star, this particular CME does not pose a threat to Earth at the moment. Solar activity is ramping up as we approach the peak of Solar Cycle 25 in 2025. What’s more, more — and maybe more Earth-threatening — solar explosions could follow.
As a reminder of the formidable and delicate forces at play relatively close by on Earth, the sun remains a source of wonder for astronomers and skywatchers alike.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


SpaceX Fires Up Starship Upper Stage for Ninth Test Flight in Static Fire Trial



Apple Unveils Accessibility Nutrition Labels, Magnifier for Mac, Braille Access and More

Continue Reading

Science

New Study Challenges Fuzzy Dark Matter with Stronger Mass Constraint

Published

on

By

New Study Challenges Fuzzy Dark Matter with Stronger Mass Constraint

Over 80 years, dark matter has been a great mystery for the researchers. Elusive of direct observation, it has made its existence known only by the gravitational impacts it makes on cosmic structures. Even though there is a lot of indirect evidence of its existence, the real nature of dark matter is still unknown. An important attribute of its particle is mass. While past studies have constrained the mass of fermionic dark matter using quantum principles like Pauli’s exclusion principle, bosonic dark matter remained less constrained. In a recent study, scientists have estimated a new lower bound on the mass of ultra-lightweight bosonic dark matter particles.

About the study

According to the study published in Physical Review Letters, the mass of ultralight bosonic dark matter must be more than 2 × 10-21 electron volts (eV), 100 times more than previous estimates using Heisenberg’s uncertainty principle.

The team of researchers, led by the first author of the study, Tim Zimmermann, a Ph.D. candidate at the Institute of Theoretical Astrophysics, University of Oslo, focused their method on the data of Leo II, the Milky Way’s satellite galaxy. It is a dwarf galaxy 1,000 times smaller than the Milky Way. By analyzing the internal motions of stars within Leo II—heavily influenced by dark matter—the team derived 5,000 possible dark matter density profiles using a tool called GRAVSPHERE.

They compared these with profiles generated by quantum wave functions of various dark matter particle masses. If the particle is too light, quantum fuzziness spreads it too thinly, preventing it from forming the observed structures. The study concluded that the dark matter particle must have a mass greater than 2.2 × 10⁻²¹ electron volts (eV)—over 100 times more than previous lower estimates.

Impact on dark matter studies

The findings have significant implications for popular ultralight dark matter models, particularly fuzzy dark matter, which typically proposes particles with masses around 10-22 ev.

Looking ahead, the team plans to extend their methodology to mixed dark matter scenarios, where dark matter is composed of particles with different masses.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


iPhone 17 Air Said to Be Thinner Than Samsung Galaxy S25 Edge; Battery Capacity Leaked



Home Projector Market to Double In Next 4 Years, South and West Key for BenQ India: Rajeev Singh

Continue Reading

Science

NASA’s Perseverance Captures Deimos Before Dawn in Striking Martian Sky Image

Published

on

By

NASA’s Perseverance Captures Deimos Before Dawn in Striking Martian Sky Image

NASA’s Perseverance rover has delivered a striking early morning image of Mars’ moon Deimos, taken just before dawn on March 1, 2025 — Sol 1433 of the mission. Captured at 4:27 a.m. local time using the rover’s left navigation camera, the view combines 16 long-exposure shots taken over 52 seconds. Each frame used the maximum exposure setting of 3.28 seconds, enabling the camera to glimpse faint celestial features in Mars’ dim pre-dawn sky. Though the image appears hazy due to low light and digital noise, the effort reveals a rare visual of Deimos suspended in the Martian atmosphere.

Perseverance’s Celestial Snapshot Reveals Deimos, Distant Stars, and Martian Sky Dynamics

As per a report from NASA’s Jet Propulsion Laboratory, the brightness of Deimos is accompanied by multiple white specks across the sky, many of which are likely caused by image noise. Some of them could be cosmic rays hitting the sensor while exposing. Two bright spots, Regulus and Algieba, are easily found in the image. It adds perspective on the rover’s unique view of things, these stars, which belong to the Leo constellation. The image was stitched together onboard and transmitted later to Earth, where researchers analysed the result.

These make the resultant composition an example of other possible roles of the Perseverance rover as an observational instrument apart from geology and surface exploration. While atmospheric haze and digital distortion make it difficult to show in full clarity, the long-exposure effort shows the faintness with which Martian moons and nearby stars can, in fact, still be tracked under controlled conditions. Deimos appears brighter due to its reflective nature and proximity during this early-morning observation.

Researchers believe this type of celestial photography may enhance understanding of Mars‘ sky conditions and moon dynamics. Deimos and Phobos, the Red Planet’s two moons, are of growing interest as potential markers for future orbit-based missions. Capturing them from the surface during optimal lighting conditions offers new insights into their behaviour.

NASA continues to push imaging capabilities on Mars through Perseverance’s tools. With each sol, even distant cosmic views — like Deimos before dawn — offer new visual science from the Martian frontier.

Continue Reading

Trending