Connect with us

Published

on

In a recent observation, NASA’s Hubble Space Telescope has documented a close interaction between the Milky Way and one of its nearest galactic neighbours, the Large Magellanic Cloud (LMC). This recent analysis of the LMC, led by Andrew Fox of the European Space Agency’s Space Telescope Science Institute (STScI) in Baltimore, reveals the effects of its near-collision with the Milky Way’s massive halo, including a significant reduction of the LMC’s own halo of gas.

The LMC’s Halo: A Surprising Measurement

For the first time, Hubble data allowed researchers to measure the extent of the LMC’s halo, which is now estimated at 50,000 light-years across, considerably smaller than other galaxies of similar mass. This contraction of the halo, explained Fox, points to the effects of the LMC’s encounter with the Milky Way, which stripped away a considerable portion of its outer gas layer. Despite these losses, the LMC still contains sufficient gas to form new stars, adding resilience to the otherwise diminished dwarf galaxy.

Ram-Pressure Stripping: The Force at Play

A process known as ram-pressure stripping is responsible for much of the LMC’s halo loss. As the LMC approached the Milky Way, the larger galaxy’s gravitational influence exerted a “wind” effect, pushing back the LMC’s gas into a tail-like stream that now trails the galaxy. Sapna Mishra, lead author on the research paper, likened this force to a powerful “hairdryer,” stripping away the LMC’s gas. This gas, however, is not expected to be completely lost, as the galaxy begins to move away from the Milky Way after its closest pass.

Future Research and Cosmic Implications

As the team moves forward, plans are in place to study the leading edge of the LMC’s halo, which remains largely unexplored. Scott Lucchini of the Centre for Astrophysics | Harvard & Smithsonian remarked that this research will focus on the collision points between the two halos, providing insight into the nature of galactic interactions in the universe’s early days.

Continue Reading

Science

Scientists Transform Lead into Gold, But Only for a Fleeting Moment

Published

on

By

Scientists Transform Lead into Gold, But Only for a Fleeting Moment

Medieval alchemists would have been stunned to see lead turned into gold – but that’s what scientists at CERN’s Awesomely Large Hadron Collider (LHC) have done. Through near-miss collisions rather than head-on atomic bashes, the team at the ALICE collaboration can convert lead to gold at a rate of 89,000 atoms each second. Although each gold atom survived only a tiny fraction of a second, the experiment is a testament to the precision of modern particle physics. It serves as a testament to the LHC’s growing ability to change the very structure of the atom.

CERN Scientists Create Gold from Lead Using Proton Removal at LHC—But Only for a Split Second

As per the report from CERN, three protons are stripped from the lead nuclei, transforming them into gold. These odd metamorphoses occurred when lead atoms barely missed each other, resulting in powerful electric and magnetic fields that could have shuffled the particles. Their detectors would work on both large and small particle-event scales “because it’s the small ones that you need to see that those tiny changes would be different,” ALICE project chief Marco Van Leeuwen mentioned.

Despite the astonishing atom-per-second count, the total mass of gold created between 2015 and 2018 added up to just 29 picograms — far less than visible to the naked eye. Uliana Dmitrieva, a physicist from the collaboration, highlighted that it represents the first observation of this type of gold production at the LHC and with their sophisticated detectors. Though recent upgrades have almost doubled output, the gold remains more symbolic, scientifically, than economically.

The findings have a broader significance than mere novelty. As physicist John Jowett explains, this is fine-tuning of electromagnetic dissociation in theoretical models, and it helps estimate beam losses, which are important for improving the LHC as well as future colliders. While commercial alchemy remains in the realm of science fiction, it helps push forward the understanding of particle manipulation and atomic science.

This transient artifice of gold illustrates not only human creativity but the distance technology today has travelled from the desires of the alchemists of old.

Continue Reading

Science

Scientists Discover Three-Eyed Sea Moth From Half a Billion Years Ago

Published

on

By

Scientists Discover Three-Eyed Sea Moth From Half a Billion Years Ago

Scientists have discovered a half a million years old three eyed “sea moth” from a cache of museum fossils in Canada. These finger-sized feisty predators are speculated to lurk in the primordial seas, hooking prey into its mouth while breathing through long gills on its butt. This species is named Mosura fentoni because of its resemblance to the fictional Japanese monster Mothra. This species, belonging to the group of ancestral arthropods called radiodonts, gives valuable insight towards the surprising diversity and adaptations in the ancient arthropods.

About the species

According to a study by Paleontologists Joseph Moysiuk and Jean-Bernard Caron, earliest-diverging arthropods, the radiodonts, exhibited comparatively limited variability in tagmosis. Unlike them, the newly found species M. fentoni exhibits up to 26 trunk segments, the highest number reported for any radiodont, despite being among the smallest known.

The species also had the longest gills relative to body length of all known radiodonts. the back-end gills were most likely a specialized system for respiration; horseshoe crabs, wood lice and some other living arthropods have subsequently evolved a similar system. Researchers aren’t certain why M. fentoni needed the long butt gills, but they speculated it was an adaptation to low-oxygen environments or an active lifestyle.

While paleontologists are still learning why Mosura fentoni had a third eye, researchers believe the eye may have been used to detect light and the seascape it moved through. Perhaps Mosura fentoni’s median eye was used to orient themselves during high-speed hunts, according to the U.K. Natural History Museum.

Key Insights

Arthropods are a large group of invertebrates with hard exoskeletons, segmented bodies and jointed legs. Today, they make up around three-quarters of all living animals, including insects, arachnids and crustaceans. One of the reasons for their evolutionary success is their specialized body segments. Radiodonts are probably the first group of arthropods to branch out in the evolutionary tree, so they provide key insight into ancestral traits for the entire group. The new species emphasizes that these early arthropods were already surprisingly diverse and were adapting in a comparable way to their distant modern relatives.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


NASA’s LROC Captures ispace RESILIENCE Landing Site Ahead of June 2025 Lunar Touchdown



Acer AI TransBuds With Ear-Hook Design Unveiled at Computex 2025

Continue Reading

Science

NASA’s LROC Captures ispace RESILIENCE Landing Site Ahead of June 2025 Lunar Touchdown

Published

on

By

NASA's LROC Captures ispace RESILIENCE Landing Site Ahead of June 2025 Lunar Touchdown

NASA’s LROC (Lunar Reconnaissance Orbiter Camera) has taken high resolution picture of the landing area for the ispace SMBC and HAKUTO-R Mission 2 lunar lander. It has been named RESILIENCE. This is scheduled to land on June 5, 2025, at a plain lava site near the north of the Moon, and within Mare Frigoris, dispersed with large-scale wrinkle ridges. This image gives enough details to the researchers preparing for this mission of lunar attempted ambition. This view is around 3.13 miles wide below the north. 

Ancient Lunar Terrain of Mare Frigoris

According to the research by NASA’s  Goddard Space Flight Center, Mare Frigoris is a basaltic plain built before 3.5 billion years, at the time of volcanic activities on the Moon. Image formed by LROC displays a terrain formed by the ancient lava flow with wrinkle ridges, built by tectonic features due to the cooling crust of the Moon. Such formations give valuable clues regarding geological history of the Moon and the driving forces that shaped its surface.

Why Mare Frigoris Was Chosen

This landing site has been chosen for relative smoothness and scientific interests. Mare Frigoris provides a stable surface, ideal for its soft landing. Ispace’s RESILIENCE is the second Japanese-led mission if it touches down successfully after HAKUTO-R in 2023, which ended due to a crash descent.

A Commercial Step Toward the Moon

The mission quite valuable because it is a commercial venture operated by Japans ispace in collaboration with SMBC Group. The ander is designed to showcase key technologies for future lunar logistics, long-term lunar infrastructure and resource exploration. There is a need to build a sustainable lunar economy with the rise in international interest in the Moon including Artemis program and more. 

Mapping the Path to Lunar Success

With the June launch window coming near, the new image generation by LROC helps the scientists to refine their landing path and allow them to understand the site. With the success of RESILIENCE, there will be another step forward to humanity’s renewed presence on the Moon.

Continue Reading

Trending