Connect with us

Published

on

Observing space allows scientists to peer into the universe’s past. This is possible because light requires time to travel over vast cosmic distances. By capturing light from celestial objects, telescopes act as windows into earlier periods of the universe’s history.

Light travels at approximately 186,000 miles (300,000 kilometres) per second. Despite this incredible speed, the immense distances in space mean that light takes noticeable amounts of time to reach Earth. For instance, the Moon is about 239,000 miles away from Earth, and its light takes 1.3 seconds to arrive. Similarly, light from Neptune, the farthest planet in our solar system, takes approximately four hours to reach us.

Measuring Galactic Distances Through Light

Within the Milky Way galaxy, distances are expressed in light-years, referring to the distance light travels in one year. Proxima Centauri, the closest star to our solar system, is over four light-years away. Observing it reveals how it appeared over four years ago, as the light seen today began its journey then.

Galaxies outside the Milky Way lie even farther away. The Andromeda galaxy, the Milky Way’s nearest large neighbour, is located about 2.5 million light-years away. When scientists study Andromeda, they observe light that began its journey before early humans roamed the Earth.

The Universe’s Oldest Light

The James Webb Space Telescope has the capability to detect light from galaxies billions of light-years away. This light originated when the universe was in its infancy, allowing astronomers to study its early stages. Observations of such distant galaxies provide valuable insights into the universe’s evolution over its 13.8-billion-year history.

Astronomical research using telescopes like Webb has transformed our understanding of time and space, enabling a deeper exploration of the universe’s origins and its continual transformation.

Continue Reading

Science

Ghostly Neutrinos May Hold the Answer to Why Matter Exists in Our Universe

Published

on

By

In a breakthrough study, scientists merged data from Japan’s T2K and the U.S. NOvA neutrino experiments to explore why matter exists in the universe. The findings improve measurements of neutrino behavior and may help reveal whether these particles break symmetry with antimatter, offering vital clues to how the universe survived after the Big Bang.

Continue Reading

Science

German Scientists Develop Laser Drill to Explore Icy Moons’ Hidden Oceans

Published

on

By

Scientists from TU Dresden have created a laser drill that vaporises ice to reach potential subsurface oceans on Europa and Enceladus. Lighter and more energy-efficient than mechanical drills, it enables deep exploration with minimal power, paving the way for studying icy worlds and their potential for extraterrestrial life.

Continue Reading

Science

Japan’s Akatsuki Spacecraft Declared Inoperable, Marking End of Dedicated Venus Missions

Published

on

By

Japan’s Akatsuki spacecraft, which studied Venus for nearly a decade, has been declared inoperable by JAXA. Successfully orbiting in 2015 after an initial failure, Akatsuki uncovered major insights into Venus’s swirling clouds and atmosphere. Its mission’s end leaves a gap until NASA’s VERITAS and DAVINCI+ missions take over.

Continue Reading

Trending