Connect with us

Published

on

A recent study utilising data from the James Webb Space Telescope (JWST) has confirmed the existence of an unusual cosmic effect termed the “Einstein zig-zag.” This rare phenomenon occurs when light from a distant quasar traverses two distinct regions of warped space-time, producing multiple mirrored images. Six duplicates of a luminous quasar, identified as J1721+8842, were found, providing a new perspective on gravitational lensing and potentially addressing critical challenges in cosmology.

Discovery of J1721+8842’s Unique Configuration

The quasar J1721+8842 was first identified in 2018 as four mirrored points of light billions of light-years from Earth. Initially, these were attributed to gravitational lensing, where light from a distant object bends due to the immense gravity of a lensing galaxy. However, subsequent observations in 2022 revealed two additional faint points of light, suggesting a complex structure involving multiple lensing objects.

Recent reanalysis using JWST data has shown that all six images originate from a single quasar, as per a new study published in arXiv. The light bent around two massive lensing galaxies forms a faint Einstein ring alongside the mirrored points. The unique path taken by the light, bending in opposite directions around the lenses, led researchers to coin the term “Einstein zig-zag” to describe this configuration.

Implications for Cosmology

Gravitationally lensed objects like J1721+8842 are invaluable for understanding the universe’s fundamental properties. The zig-zag effect allows for precise measurements of the Hubble constant, which determines the rate of cosmic expansion and the influence of dark energy. Thomas Collett, astrophysicist at the University of Portsmouth, noted that this discovery could clarify inconsistencies in current cosmological models, although extracting definitive data could take over a year.

This observation offers a critical opportunity to refine our understanding of the universe’s structure and expansion, potentially resolving ongoing challenges like the Hubble tension. While further analysis is needed, the Einstein zig-zag provides a promising avenue for breakthroughs in cosmology.

Continue Reading

Science

Engineers Turn Lobster Shells Into Robot Parts That Lift, Grip and Swim

Published

on

By

Engineers have transformed discarded crustacean shells into functional biohybrid robots by softening the shell segments, adding elastomers, and attaching motors. These recycled structures can lift weight, grasp delicate items, and even propel small swimmers. The project demonstrates how food waste can become a sustainable robotics resource, though challenges remain wi…

Continue Reading

Science

Strongest Solar Flare of 2025 Sends High-Energy Radiation Rushing Toward Earth

Published

on

By

A powerful X5.1 solar flare on November 11, 2025, sent high-speed protons toward Earth, producing the strongest radiation spike detected in nearly two decades. The event caused a rare ground-level enhancement, briefly raising radiation at flight altitude to ten times normal. While not dangerous this time, scientists warn larger flares could threaten avionics and commu…

Continue Reading

Science

Astronomers Spot Galaxies Moving in Sync Across a 50-Million-Light-Year Stretch

Published

on

By

Astronomers have identified a 50-million-light-year-long cosmic filament in which 14 gas-rich galaxies all rotate in sync with the structure itself. The filament, mapped about 140 million light-years away, appears young, cold and shaped by slow cosmic flows. Galaxies on opposite ends move in opposite directions, suggesting the entire filament is spinning.

Continue Reading

Trending