Connect with us

Published

on

A recent study utilising data from the James Webb Space Telescope (JWST) has confirmed the existence of an unusual cosmic effect termed the “Einstein zig-zag.” This rare phenomenon occurs when light from a distant quasar traverses two distinct regions of warped space-time, producing multiple mirrored images. Six duplicates of a luminous quasar, identified as J1721+8842, were found, providing a new perspective on gravitational lensing and potentially addressing critical challenges in cosmology.

Discovery of J1721+8842’s Unique Configuration

The quasar J1721+8842 was first identified in 2018 as four mirrored points of light billions of light-years from Earth. Initially, these were attributed to gravitational lensing, where light from a distant object bends due to the immense gravity of a lensing galaxy. However, subsequent observations in 2022 revealed two additional faint points of light, suggesting a complex structure involving multiple lensing objects.

Recent reanalysis using JWST data has shown that all six images originate from a single quasar, as per a new study published in arXiv. The light bent around two massive lensing galaxies forms a faint Einstein ring alongside the mirrored points. The unique path taken by the light, bending in opposite directions around the lenses, led researchers to coin the term “Einstein zig-zag” to describe this configuration.

Implications for Cosmology

Gravitationally lensed objects like J1721+8842 are invaluable for understanding the universe’s fundamental properties. The zig-zag effect allows for precise measurements of the Hubble constant, which determines the rate of cosmic expansion and the influence of dark energy. Thomas Collett, astrophysicist at the University of Portsmouth, noted that this discovery could clarify inconsistencies in current cosmological models, although extracting definitive data could take over a year.

This observation offers a critical opportunity to refine our understanding of the universe’s structure and expansion, potentially resolving ongoing challenges like the Hubble tension. While further analysis is needed, the Einstein zig-zag provides a promising avenue for breakthroughs in cosmology.

Continue Reading

Science

NASA Showcases New AI Tools That Can Help In Scientific Research

Published

on

By

NASA Showcases New AI Tools That Can Help In Scientific Research

At the Supercomputing Conference or SC2024, NASA’s Associate Administrator for the Science Mission Directorate, Nicola Fox, detailed new computational tools intended to advance space science. NASA plans to employ a large language model across its science divisions, bolstered by foundation models tailored to Earth science, heliophysics, astrophysics, planetary science, and biological and physical sciences. This strategy was illustrated through a heliophysics foundation model, which applies extensive data from NASA’s Solar Dynamics Observatory to forecast solar wind events and track sunspot activity.

Evolution of Space Computing and the Voyager Missions

Fox recounted how NASA’s Voyager missions, launched in the 1970s, served as milestones in computing for space exploration. Operating with early semiconductor memory, these spacecraft provided unique insights, including discoveries of Jupiter’s faint ring and Saturn’s additional moons.

Although far surpassed by modern technology, the Voyager missions revealed the possibilities for future computational breakthroughs in space science. Since then, NASA’s computational requirements have expanded, with over 140 petabytes of data now stored and shared under open science policies, allowing global scientists to access and benefit from NASA’s research.

Real-Time Data and Earth Observation Advances

NASA’s Earth Information Center was presented as a prime example of federal collaboration. It integrated data on environmental changes with insights from agencies such as NOAA and the EPA.

Using data from satellite missions, Fox showcased NASA’s ability to observe natural events like wildfires in near real-time. She also noted advancements in wildfire detection from polar-orbiting satellites, allowing precise tracking of hot spots. She said that data-driven efforts like these are critical as NASA continues to enhance the monitoring of natural phenomena on Earth.

Searching for Life Beyond Earth

Towards the end, she addressed NASA’s ongoing investigations into extraterrestrial life. Recent studies of exoplanets, such as LP 791-18d, underscore this pursuit. NASA’s observatories, including the Transiting Exoplanet Survey Satellite (TESS). It has facilitated the detection of thousands of exoplanets, aiding in the search for conditions that might support life beyond Earth.

Fox concluded by highlighting the powerful role that AI and computing now play in analysing the massive datasets produced by NASA’s missions, making it possible to explore questions that were previously out of reach.

Continue Reading

Science

These Clams Use Fiber Optic-Like Structure to Harness Sunlight: Study

Published

on

By

These Clams Use Fiber Optic-Like Structure to Harness Sunlight: Study

Researchers have discovered a biological adaptation in heart cockles (Corculum cardissa), a species of bivalve found in the Indian and Pacific Oceans. These clams possess unique structures in their shells that act similarly to fibre optics, guiding sunlight to symbiotic algae living within them. This allows the clams to provide their algae with the necessary light for photosynthesis while simultaneously protecting them from harmful ultraviolet rays. The algae, in turn, offer the clams essential nutrients such as sugars.

Sunlight Channeling Through Shells

Heart cockles are small bivalves measuring around the size of a walnut. Their shells are covered with tiny transparent areas, which have been found to function like fibre-optic cables. This ability is attributed to the structure of aragonite, a crystalline form of calcium carbonate present in their shells. Through microscopic examinations, it was revealed that the aragonite crystals form tubes that allow light to pass through with precision while blocking damaging UV radiation.

Dakota McCoy, an evolutionary biophysicist from the University of Chicago, and her team demonstrated that the shells allow more than twice as much photosynthetically beneficial light to enter than UV light in a study published in the Nature Communications journal. This process potentially helps prevent coral bleaching and similar phenomena in clams, which can be exacerbated by climate change.

Unique Design Offers Technological Insights

The fibre-optic-like structures found in heart cockles are not only intriguing in a biological context but also present possible applications in technology. Researchers suggest that the natural light-channelling abilities of aragonite could inspire advancements in optical systems, particularly for wireless communication and precision measurement tools.

Boon Ooi, a photonics researcher at the King Abdullah University of Science and Technology, noted that mimicking these structures could lead to more efficient light collection systems, offering improvements over current fibre-optic technologies, as per a Science News report.

Continue Reading

Science

Despite Finding No Evidence of UFO Sightings, US Govt Agency Raises Doubt

Published

on

By

Despite Finding No Evidence of UFO Sightings, US Govt Agency Raises Doubt

In a recent Senate testimony, Jon T. Kosloski, Director of the Pentagon’s All-Domain Anomaly Resolution Office (AARO), clarified the office’s stance on unidentified anomalous phenomena (UAP) and their ongoing investigations. Speaking to the U.S. Senate Armed Services Subcommittee on Emerging Threats and Capabilities on November 19, Kosloski emphasised that AARO has yet to uncover verifiable evidence supporting extraterrestrial life, technology, or activity despite numerous unexplained sightings reported by military personnel. He stressed that his office investigates each sighting scientifically and transparently, addressing all domains – including sea, sky, and space.

UAP Cases: Mostly Explained, Some Remain Unresolved

AARO was established in 2022 to centralise UAP reports, allowing streamlined assessment of anomalous sightings by government and military entities. While most cases have been attributed to known objects like birds, drones, and balloons, Kosloski mentioned that a minority of incidents remain unexplained, as per a Space.com report.

In his testimony, he reportedly reviewed examples, such as a 2013 UAP sighting in Puerto Rico that appeared to vanish into the ocean. AARO’s investigation concluded it was an optical illusion caused by the camera’s inability to differentiate the object’s temperature from its surroundings.

Public Pressure for Transparency

Senator Kirsten Gillibrand queried whether AARO’s methods might deter individuals from reporting UAP incidents due to perceptions of governmental secrecy. Kosloski countered by asserting that AARO is uniquely empowered to access historical and current UAP data, with a mandate for transparency in reporting to Congress. In the session, it was noted that some classified data restrictions still apply, particularly regarding sensitive sensor technology, limiting the office’s public disclosures.

AARO’s 2024 report outlined 485 UAP cases, of which 118 have been solved, and 174 are under final review. While the office has encountered challenges in securing complete sensor data for some incidents, Kosloski assured that no evidence points to UAP activity linked to foreign adversaries.

Continue Reading

Trending