Connect with us

Published

on

A recent study utilising data from the James Webb Space Telescope (JWST) has confirmed the existence of an unusual cosmic effect termed the “Einstein zig-zag.” This rare phenomenon occurs when light from a distant quasar traverses two distinct regions of warped space-time, producing multiple mirrored images. Six duplicates of a luminous quasar, identified as J1721+8842, were found, providing a new perspective on gravitational lensing and potentially addressing critical challenges in cosmology.

Discovery of J1721+8842’s Unique Configuration

The quasar J1721+8842 was first identified in 2018 as four mirrored points of light billions of light-years from Earth. Initially, these were attributed to gravitational lensing, where light from a distant object bends due to the immense gravity of a lensing galaxy. However, subsequent observations in 2022 revealed two additional faint points of light, suggesting a complex structure involving multiple lensing objects.

Recent reanalysis using JWST data has shown that all six images originate from a single quasar, as per a new study published in arXiv. The light bent around two massive lensing galaxies forms a faint Einstein ring alongside the mirrored points. The unique path taken by the light, bending in opposite directions around the lenses, led researchers to coin the term “Einstein zig-zag” to describe this configuration.

Implications for Cosmology

Gravitationally lensed objects like J1721+8842 are invaluable for understanding the universe’s fundamental properties. The zig-zag effect allows for precise measurements of the Hubble constant, which determines the rate of cosmic expansion and the influence of dark energy. Thomas Collett, astrophysicist at the University of Portsmouth, noted that this discovery could clarify inconsistencies in current cosmological models, although extracting definitive data could take over a year.

This observation offers a critical opportunity to refine our understanding of the universe’s structure and expansion, potentially resolving ongoing challenges like the Hubble tension. While further analysis is needed, the Einstein zig-zag provides a promising avenue for breakthroughs in cosmology.

Continue Reading

Science

Spider-Like Scar on Jupiter’s Moon Europa Could Indicate Subsurface Salty Water

Published

on

By

A spider-like scar on Jupiter’s moon Europa may indicate briny water beneath its icy crust. Researchers suggest impact-driven flows of salty liquid created starburst patterns resembling Earth’s lake stars. Future observations by NASA’s Europa Clipper mission could confirm these features, offering new insights into Europa’s subsurface oceans and potential habit…

Continue Reading

Science

Scientists Study Ancient Interstellar Comet 3I/ATLAS, Seeking Clues to Early Star System Formation

Published

on

By

Comet 3I/ATLAS, a rare interstellar visitor from beyond the solar system, is putting on a striking celestial show as it nears Earth. After passing perihelion in October, the comet brightened nearly tenfold and shifted from red to green due to glowing carbon molecules. Tracked closely by astronomers worldwide, this ancient object offers a unique opportunity to study th…

Continue Reading

Science

Scientists Observe Solar Neutrinos Altering Matter for the First Time

Published

on

By

Scientists have directly observed solar neutrinos altering matter for the first time, confirming a decades-old prediction in particle physics. This landmark result provides the lowest-energy measurement of a neutrino–nucleus interaction ever recorded and opens a powerful new way to study elusive neutrinos, nuclear reactions, and the inner workings of the Sun and the…

Continue Reading

Trending