Connect with us

Published

on

China is reportedly preparing to activate one of the world’s most advanced X-ray light sources, the High Energy Photon Source (HEPS), located near Beijing. This facility, built at a cost of $657 million, is expected to emit X-ray beams into experimental stations by late December. The fourth-generation synchrotron, one of only a few worldwide, is said to enable researchers to examine atomic-scale structures of proteins, materials, and chemical reactions. Final operational approval from the National Development and Reform Commission is being awaited before its inauguration.

Breakthrough Capabilities of HEPS

HEPS generates x-ray light by accelerating electrons to high energies and directing them along a circular track, as per a Science.org report. The emitted synchrotron radiation, primarily “hard” x-rays, is distributed into 14 initial beamlines. Scientists will utilise these beams to image structures at atomic and nanometre scales, as well as observe chemical processes in nanoseconds.

According to ScienceAdvancer, Mingda Li, a materials quantum properties expert at MIT, described this as a groundbreaking moment for synchrotron research, likening it to the unveiling of a new telescope that uncovers previously unseen phenomena.

Applications in Structural Biology and Materials Science

As reported by the publication, Dong Yuhui, Deputy Director at the Institute of High Energy Physics (IHEP), noted that HEPS will significantly advance research in structural biology. The technology will reportedly allow high-resolution imaging of protein machines, viruses, and cellular structures in their natural environments. However, managing the vast data generated by these experiments remains a key challenge.

Global Competition and Future Plans

HEPS marks Asia’s first fourth-generation synchrotron, positioning China as a leader in advanced light source technology. While upgrades are said to be planned for Japan’s SPring-8 facility to create SPring-8-II by 2029, HEPS intends to remain competitive. The addition of 30 to 32 beamlines over the next five years has been announced by Dong, ensuring its capabilities continue to evolve and support diverse scientific pursuits.

By January 2025, proposals from the global research community will reportedly be accepted, with intense competition expected for beam time.

Continue Reading

Science

James Webb Space Telescope Could Help Reveal Dark Matter in a Way Scientists Did Not Anticipate

Published

on

By

New research suggests the James Webb Space Telescope could help scientists understand dark matter by studying oddly shaped early galaxies. These elongated galaxies may form due to dark matter’s gravitational behaviour, offering indirect clues about whether ultralight or warm dark matter particles shaped the early universe.

Continue Reading

Science

Interstellar Comet 3I/ATLAS Nears Earth on Dec. 19, Offering Rare Insights Into Cosmic Visitors

Published

on

By

Interstellar comet 3I/ATLAS will make its closest approach to Earth on Dec. 19. Observing the comet provides scientists a rare opportunity to study dust and gases from its icy nucleus and learn more about material forming around other stars, expanding understanding of interstellar objects while posing no threat to our planet.

Continue Reading

Science

Europe’s Ariane 6 Rocket Lifts Off With First Galileo Satellites, Boosting Europe’s Navigation Network

Published

on

By

Europe’s Ariane 6 rocket has launched its first Galileo navigation satellites, joining the 26-satellite constellation. The mission strengthens Europe’s GPS capabilities and reduces reliance on foreign rockets.

Continue Reading

Trending