Connect with us

Published

on

A breakthrough in solar research has been achieved using NASA’s supercomputing technology, revealing new insights into the intricate inner workings of the Sun. The simulations, developed by NASA’s Ames Research Center, showcase turbulent motions within the Sun’s upper layers, using data collected from various Sun-observing spacecraft. These findings aim to enhance understanding of solar activity and its effects on space weather.

Advanced Techniques Reveal Fine Solar Structures

The animated simulations display the vigorous twisting and churning of solar plasma, resembling chaotic flows akin to boiling water. The model demonstrates how materials move within the Sun’s layers, bringing new clarity to solar dynamics. Dr Irina Kitiashvili, a leading scientist at NASA Ames, explained that these simulations incorporate a “realistic approach,” using advanced knowledge of solar plasma to replicate phenomena observed by NASA’s Solar Dynamics Observatory.

The research focuses on recreating detailed structures of the Sun’s subsurface layers, capturing features such as shock waves and tornado-like phenomena. These elements, spanning only a few miles, represent details previously unattainable through spacecraft observations alone. However, global models of the Sun remain beyond current computational capabilities. Instead, smaller regions are modelled to yield a deeper understanding of specific dynamics.

The Sun’s activity significantly impacts Earth, influencing seasons, weather, and space weather patterns. Accurate space weather forecasts are critical for safeguarding astronauts and spacecraft, especially during missions such as NASA’s Artemis campaign. The NASA Parker Solar Probe, set to make a record-breaking approach to the Sun in December 2024, will further support these efforts.

Exploring New Frontiers in Solar Research

The simulations were run on the Pleaides supercomputer at NASA’s Advanced Supercomputing facility, generating extensive data over several weeks. As the Sun approaches its solar maximum period, researchers anticipate uncovering additional phenomena, enhancing predictions of solar behaviour.

Continue Reading

Science

Researchers Discover New Plasma Wave in Jupiter’s Auroral Skies

Published

on

By

Scientists at the University of Minnesota Twin Cities have detected a new plasma wave in Jupiter’s aurora using NASA’s Juno spacecraft. The finding, published in Physical Review Letters, reveals how Jupiter’s magnetic field shapes auroral activity differently from Earth. The study opens new directions for understanding planetary auroras and magnetic field intera…

Continue Reading

Science

Rocket Lab Launches Five Classified Satellites on 70th Electron Mission

Published

on

By

Rocket Lab reached a key milestone with its 70th Electron rocket launch, successfully sending five secret satellites into orbit on Aug. 23, 2025. The mission, called “Live, Laugh, Launch,” lifted off from New Zealand and ended its live stream early at the request of the undisclosed customer. Rocket Lab now looks ahead to the debut of its larger Neutron rocket late…

Continue Reading

Science

Researcher Photographs Giant Solar Tornado and Massive Plasma Eruption at the Same Time

Published

on

By

On August 20, researcher Maximilian Teodorescu captured a rare photo of two dramatic solar events — a giant tornado of plasma rising 130,000 km and an eruptive prominence spanning 200,000 km. Both were shaped by the sun’s unstable magnetic fields. While the prominence did release a CME, it is not aimed at Earth.

Continue Reading

Trending