Connect with us

Published

on

An alarming reduction in Earth’s freshwater supply has been identified through data from NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites. This trend, which began in May 2014, highlights a significant shift in global water availability, according to findings published in Surveys in Geophysics. The research, conducted by an international team of scientists, points to a persistent drier phase for the planet, with freshwater reserves remaining below average levels.

Key Findings from GRACE Satellite Data

The GRACE mission, operated jointly by NASA and German research centres, revealed that global freshwater reserves between 2015 and 2023 measured approximately 1,200 cubic kilometres—equivalent to two-and-a-half times the volume of Lake Erie. These measurements encompass surface water, underground aquifers, and other freshwater sources.

Matt Rodell, a hydrologist at NASA’s Goddard Space Flight Centre, stated in a press release that this reduction reflects a departure from pre-2014 averages.

Droughts and Global Warming Linked to Freshwater Loss

Research highlighted the occurrence of 13 major droughts globally since 2015, affecting regions such as Central Brazil, Australasia, and parts of Africa and Europe. These droughts have coincided with record high global temperatures, raising concerns about climate change’s role in exacerbating water shortages.

Michael Bosilovich, a meteorologist at NASA Goddard, indicated that rising temperatures have intensified droughts by altering precipitation patterns, leading to runoff rather than groundwater replenishment.

Uncertainty Surrounding Long-Term Impact

While these findings underline the urgent need for sustainable water management, some researchers remain cautious about drawing definitive links between global warming and the observed trends. Susanna Werth, a hydrologist from Virginia Tech, pointed out the inherent uncertainties in climate models, emphasising the need for continued monitoring.

Whether Earth’s freshwater supplies will recover remains uncertain, but the observed decline could foreshadow prolonged dry conditions, scientists warn.

Continue Reading

Science

Scientists Find Wastewater Bacteria That Break Down PET Plastic

Published

on

By

Scientists Find Wastewater Bacteria That Break Down PET Plastic

Our environment continues to grapple with plastic pollution, with microplastics infiltrating the air, food, and water. Scientists are actively seeking methods to break down this persistent material. A new development has identified bacteria in wastewater that can degrade polyethylene terephthalate (PET), a plastic widely used in packaging and textiles. The discovery has raised hopes of reducing PET waste, which contributes significantly to microplastic contamination in water bodies. Research efforts are now focused on understanding and enhancing the plastic-degrading ability of these microbes.

Microbes Capable of Breaking Down PET Identified

According to a study published in Environmental Science and Technology, bacteria of the Comamonas genus have been found to degrade PET. Comamonas bacteria, commonly found in wastewater, were already known to grow on plastics in aquatic environments. This prompted Dr. Ludmilla Aristilde, an environmental biochemist at Northwestern University, and her team to investigate whether these microbes consume plastic as a source of energy. The study revealed that Comamonas testosteroni could break down PET, leading to the release of nano-sized plastic particles into water.

Enzyme Responsible for PET Breakdown Identified

As per reports, researchers observed the breakdown of PET after exposing it to C. testosteroni in a controlled laboratory setting for a month. Scanning electron microscope images showed that the bacteria had significantly altered the plastic’s surface, causing the release of plastic nanoparticles. Genetic analysis identified a specific enzyme responsible for breaking down PET. Further testing confirmed its role when bacteria engineered without the gene for this enzyme were unable to degrade plastic, while non-plastic-consuming bacteria equipped with the gene could digest PET.

Challenges and Future Research in Plastic Degradation

Dr. Ren Wei, a biochemist at the University of Greifswald, expressed skepticism to Science News Explore about the practical application of this discovery, stating in reports that the degradation process is too slow to significantly reduce global plastic pollution. On the contrary, Dr. Jay Mellies, a microbiologist at Reed College, viewed the findings as promising, emphasiaing that every viable method should be explored. Dr. Victor Gambarini, a microbiologist at the University of Auckland, echoed this sentiment, suggesting that further research should focus on identifying or engineering enzymes capable of degrading PET more efficiently. Efforts are now being directed toward improving the enzyme’s efficiency to make microbial plastic degradation a practical solution.

Continue Reading

Science

Hubble Captures Stunning Tarantula Nebula Image, Revealing Cosmic Dust and Star Formation

Published

on

By

Hubble Captures Stunning Tarantula Nebula Image, Revealing Cosmic Dust and Star Formation

A striking image of the Tarantula Nebula has been captured by the NASA/ESA Hubble Space Telescope, showcasing a vast cosmic landscape filled with swirling gas and dust. Situated around 160,000 light-years away in the Large Magellanic Cloud, this nebula is known as one of the most active star-forming regions in the universe. The image reveals intricate layers of dust clouds, with dark reddish formations that block light and dense clusters appearing nearly black. Wispy pale clouds stretch across the scene, resembling smoke curling through space, while countless stars shine in shades of blue, purple, and red, reflecting their varying depths within the nebula.

Scientific Insights into Cosmic Dust

According to reports, as part of an observing programme focused on cosmic dust properties in the Large Magellanic Cloud and nearby galaxies, the nebula’s vibrant structure is composed of gaseous clouds and dense dust formations. Unlike common household dust, cosmic dust consists of carbon-based molecules or silicates containing silicon and oxygen. These particles, though minuscule in size, play a crucial role in celestial processes.

The Role of Dust in Star Formation

Researchers have found that cosmic dust is instrumental in star and planet formation. Dust grains in protoplanetary disks around young stars gradually cluster together, forming larger bodies that eventually evolve into planets. Additionally, dust helps cool interstellar gas clouds, allowing them to condense and give rise to new stars. The presence of dust also contributes to molecular formation, serving as a medium for atoms to bond in the vast expanse of space.

A Glimpse into the Universe’s Evolution

The Tarantula Nebula continues to be a focal point for astronomers studying stellar evolution and cosmic dust dynamics. As new data emerges, scientists aim to uncover further details about the nebula’s structure and the fundamental role dust plays in shaping galaxies. Observations like these contribute to a broader understanding of the universe’s complex and ever-changing nature.

Continue Reading

Science

Greenland’s Ice Sheet Approaches Dangerous Tipping Point Amid Rapid Melting

Published

on

By

Greenland's Ice Sheet Approaches Dangerous Tipping Point Amid Rapid Melting

Greenland’s ice sheet is heading towards an irreversible tipping point that could lead to catastrophic consequences, as warned by climate scientists. The immense sheet has been losing ice at an unprecedented rate, with estimates indicating a loss of around 33 million tons per hour. A global temperature rise of just 2 degrees Celsius could trigger a collapse, potentially resulting in sea levels rising by approximately seven metres. This development threatens coastal communities worldwide and poses severe risks to marine ecosystems and global weather patterns.

Findings Highlight an Alarming Future

According to a study published in The Cryosphere, researchers developed a climate model to assess the ice sheet’s future under varying warming conditions. It was determined that an annual ice loss of approximately 230 gigatons would mark the threshold for irreversible decline. This volume represents a significant reduction from pre-industrial levels, suggesting that if current trends continue, Greenland’s ice sheet could reach a critical state by the end of the century.

Significance of Greenland’s Ice Sheet

The Greenland ice sheet is one of the planet’s two permanent ice masses, alongside Antarctica. Covering about 1.7 million square kilometres, it accounts for a large portion of the Earth’s freshwater reserves. Reports indicate that both Greenland and Antarctic ice sheets have collectively lost around 6.9 trillion tons of ice since 1994, a trend driven by human-induced climate change. Despite the alarming loss, experts believe immediate and drastic carbon emission reductions could slow or prevent irreversible damage.

Wider Implications of Accelerated Melting

Studies have revealed that ice loss is occurring at an accelerating pace across the globe. Between 2000 and 2019, glaciers worldwide lost an average of 294 billion tons of mass annually. This trend has significantly contributed to rising sea levels and disrupted ocean currents, with further warming expected to intensify these effects. Scientists caution that continued inaction may lead to widespread environmental and socio-economic disruptions.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


NASA Supercomputer Finds Spiral Structure in the Oort Cloud’s Inner Region



Crypto Price Today: Bitcoin, Ether See Losses Alongside Most Altcoins, Price Charts Show Volatility

Related Stories

Continue Reading

Trending