Connect with us

Published

on

Last week, three small Australian satellites from Curtin University’s Binar Space Program re-entered Earth’s atmosphere and burned up far earlier than expected, cutting short valuable research opportunities. Launched with an initial lifespan of six months, these CubeSats – named Binar-2, Binar-3, and Binar-4 – only lasted two months in low Earth orbit (LEO), a situation attributed to intensified solar activity that has been challenging satellite operations in recent years.

Solar Activity Surges, Defying Predictions

According to a Live Science report, solar activity has recently surpassed predictions, registering levels one and a half times higher than anticipated for the current solar cycle, known as Solar Cycle 25. This surge, marked by an increase in solar flares, sunspots, and solar wind, is caused by fluctuations in the Sun’s magnetic field, which reverses polarity approximately every 11 years. While solar cycles have been mapped, solar weather forecasting remains in its infancy, making precise predictions challenging.

The space weather effects on Earth have been significant. Intense auroras have been observed closer to the equator, and the heightened solar wind has increased ionising radiation, posing additional hazards for astronauts and high-altitude flights. Satellites in LEO, especially those without thrusters or altitude adjustment systems, such as the Binar CubeSats, face a constant drag that accelerates their orbital decay during periods of heightened solar activity.

The Impact on Satellite Missions

The early demise of the Binar CubeSats highlights the need for improved space weather forecasting to support satellite operations. CubeSats, like those in Curtin’s program, are frequently used for research by universities and often lack the ability to counteract the increased atmospheric drag caused by space weather. Their sudden re-entry illustrates the risks faced by satellites during solar peaks.

Further Binar missions are already in development, with launches planned for late 2026, when solar activity is expected to decline. As solar minimum conditions approach by 2030, the next generation of CubeSats may operate in a more stable space environment, allowing for more prolonged research endeavours.

Continue Reading

Science

Scientists Find Wastewater Bacteria That Break Down PET Plastic

Published

on

By

Scientists Find Wastewater Bacteria That Break Down PET Plastic

Our environment continues to grapple with plastic pollution, with microplastics infiltrating the air, food, and water. Scientists are actively seeking methods to break down this persistent material. A new development has identified bacteria in wastewater that can degrade polyethylene terephthalate (PET), a plastic widely used in packaging and textiles. The discovery has raised hopes of reducing PET waste, which contributes significantly to microplastic contamination in water bodies. Research efforts are now focused on understanding and enhancing the plastic-degrading ability of these microbes.

Microbes Capable of Breaking Down PET Identified

According to a study published in Environmental Science and Technology, bacteria of the Comamonas genus have been found to degrade PET. Comamonas bacteria, commonly found in wastewater, were already known to grow on plastics in aquatic environments. This prompted Dr. Ludmilla Aristilde, an environmental biochemist at Northwestern University, and her team to investigate whether these microbes consume plastic as a source of energy. The study revealed that Comamonas testosteroni could break down PET, leading to the release of nano-sized plastic particles into water.

Enzyme Responsible for PET Breakdown Identified

As per reports, researchers observed the breakdown of PET after exposing it to C. testosteroni in a controlled laboratory setting for a month. Scanning electron microscope images showed that the bacteria had significantly altered the plastic’s surface, causing the release of plastic nanoparticles. Genetic analysis identified a specific enzyme responsible for breaking down PET. Further testing confirmed its role when bacteria engineered without the gene for this enzyme were unable to degrade plastic, while non-plastic-consuming bacteria equipped with the gene could digest PET.

Challenges and Future Research in Plastic Degradation

Dr. Ren Wei, a biochemist at the University of Greifswald, expressed skepticism to Science News Explore about the practical application of this discovery, stating in reports that the degradation process is too slow to significantly reduce global plastic pollution. On the contrary, Dr. Jay Mellies, a microbiologist at Reed College, viewed the findings as promising, emphasiaing that every viable method should be explored. Dr. Victor Gambarini, a microbiologist at the University of Auckland, echoed this sentiment, suggesting that further research should focus on identifying or engineering enzymes capable of degrading PET more efficiently. Efforts are now being directed toward improving the enzyme’s efficiency to make microbial plastic degradation a practical solution.

Continue Reading

Science

Hubble Captures Stunning Tarantula Nebula Image, Revealing Cosmic Dust and Star Formation

Published

on

By

Hubble Captures Stunning Tarantula Nebula Image, Revealing Cosmic Dust and Star Formation

A striking image of the Tarantula Nebula has been captured by the NASA/ESA Hubble Space Telescope, showcasing a vast cosmic landscape filled with swirling gas and dust. Situated around 160,000 light-years away in the Large Magellanic Cloud, this nebula is known as one of the most active star-forming regions in the universe. The image reveals intricate layers of dust clouds, with dark reddish formations that block light and dense clusters appearing nearly black. Wispy pale clouds stretch across the scene, resembling smoke curling through space, while countless stars shine in shades of blue, purple, and red, reflecting their varying depths within the nebula.

Scientific Insights into Cosmic Dust

According to reports, as part of an observing programme focused on cosmic dust properties in the Large Magellanic Cloud and nearby galaxies, the nebula’s vibrant structure is composed of gaseous clouds and dense dust formations. Unlike common household dust, cosmic dust consists of carbon-based molecules or silicates containing silicon and oxygen. These particles, though minuscule in size, play a crucial role in celestial processes.

The Role of Dust in Star Formation

Researchers have found that cosmic dust is instrumental in star and planet formation. Dust grains in protoplanetary disks around young stars gradually cluster together, forming larger bodies that eventually evolve into planets. Additionally, dust helps cool interstellar gas clouds, allowing them to condense and give rise to new stars. The presence of dust also contributes to molecular formation, serving as a medium for atoms to bond in the vast expanse of space.

A Glimpse into the Universe’s Evolution

The Tarantula Nebula continues to be a focal point for astronomers studying stellar evolution and cosmic dust dynamics. As new data emerges, scientists aim to uncover further details about the nebula’s structure and the fundamental role dust plays in shaping galaxies. Observations like these contribute to a broader understanding of the universe’s complex and ever-changing nature.

Continue Reading

Science

Greenland’s Ice Sheet Approaches Dangerous Tipping Point Amid Rapid Melting

Published

on

By

Greenland's Ice Sheet Approaches Dangerous Tipping Point Amid Rapid Melting

Greenland’s ice sheet is heading towards an irreversible tipping point that could lead to catastrophic consequences, as warned by climate scientists. The immense sheet has been losing ice at an unprecedented rate, with estimates indicating a loss of around 33 million tons per hour. A global temperature rise of just 2 degrees Celsius could trigger a collapse, potentially resulting in sea levels rising by approximately seven metres. This development threatens coastal communities worldwide and poses severe risks to marine ecosystems and global weather patterns.

Findings Highlight an Alarming Future

According to a study published in The Cryosphere, researchers developed a climate model to assess the ice sheet’s future under varying warming conditions. It was determined that an annual ice loss of approximately 230 gigatons would mark the threshold for irreversible decline. This volume represents a significant reduction from pre-industrial levels, suggesting that if current trends continue, Greenland’s ice sheet could reach a critical state by the end of the century.

Significance of Greenland’s Ice Sheet

The Greenland ice sheet is one of the planet’s two permanent ice masses, alongside Antarctica. Covering about 1.7 million square kilometres, it accounts for a large portion of the Earth’s freshwater reserves. Reports indicate that both Greenland and Antarctic ice sheets have collectively lost around 6.9 trillion tons of ice since 1994, a trend driven by human-induced climate change. Despite the alarming loss, experts believe immediate and drastic carbon emission reductions could slow or prevent irreversible damage.

Wider Implications of Accelerated Melting

Studies have revealed that ice loss is occurring at an accelerating pace across the globe. Between 2000 and 2019, glaciers worldwide lost an average of 294 billion tons of mass annually. This trend has significantly contributed to rising sea levels and disrupted ocean currents, with further warming expected to intensify these effects. Scientists caution that continued inaction may lead to widespread environmental and socio-economic disruptions.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


NASA Supercomputer Finds Spiral Structure in the Oort Cloud’s Inner Region



Crypto Price Today: Bitcoin, Ether See Losses Alongside Most Altcoins, Price Charts Show Volatility

Related Stories

Continue Reading

Trending