Connect with us

Published

on

New research has uncovered that the Ninetyeast Ridge, a 5,000-kilometre-long underwater mountain range in the Indian Ocean, was shaped by a moving hotspot rather than a stationary one. The study, published in Nature Communications, analysed mineral samples from the ridge and dated its formation to between 83 and 43 million years ago. This discovery challenges earlier assumptions about its origin and sheds light on how tectonic plates have shifted over millions of years.

Implications for Plate Tectonics and Dating

Findings from Curtin University’s School of Earth and Planetary Sciences indicate that the Kerguelen hotspot responsible for the ridge moved several hundred kilometres within the Earth’s mantle during its activity. Dr Hugo Olierook, a co-author of the study, told Phys.org that this kind of hotspot movement, while believed to be common, has rarely been proven. He noted that this is the first confirmed instance of such movement in the Indian Ocean.

Precise dating methods employed in the research have revised earlier age estimates for the Ninetyeast Ridge, which have long informed tectonic models. According to Professor Fred Jourdan, also a co-author from Curtin University and the John de Laeter Centre, these updated models offer more accurate reconstructions of the Earth’s tectonic history. The study highlights the importance of such refinements for understanding ancient geological events.

Future Insights into Earth’s Internal Processes

Lead author Associate Professor Qiang Jiang, now with the China University of Petroleum, stressed the importance of comprehending Earth’s internal dynamics to predict natural disasters more effectively. He noted that studies like this enhance understanding of processes such as earthquakes and volcanic activity.

The research provides a pivotal contribution to geological science by documenting the interplay between tectonic shifts and mantle dynamics.

Continue Reading

Science

Mushrooms Could Power Future Eco-Friendly Computers, Study Suggests

Published

on

By

Researchers at The Ohio State University have turned mushrooms into organic memory devices that mimic brain-like computing. The fungal circuits, powered by shiitake and button mushrooms, can switch between electrical states thousands of times per second, offering a biodegradable, low-cost alternative to conventional microchips.

Continue Reading

Science

MIT Physicists Discover a Way to See Inside Atoms Using Tabletop Molecular Technique

Published

on

By

MIT physicists have developed a molecular technique using radium monofluoride that lets electrons probe inside atomic nuclei, replacing particle accelerators and offering new insight into matter–antimatter asymmetry.

Continue Reading

Science

Saturn’s Icy Moon Enceladus Organic Molecules May Have Been Fromed by Cosmic Rays, Scientists Find

Published

on

By

Laboratory experiments reveal that radiation striking Saturn’s icy moon Enceladus can create simple organic molecules, reshaping how scientists interpret Cassini’s data and highlighting radiation’s key role in the chemistry of icy moons.

Continue Reading

Trending