Connect with us

Published

on

A gas giant exoplanet, estimated to be just 3 million years old, has been identified by researchers as one of the youngest planets ever observed. The planet, named TIDYE-1b, orbits a protostar located in the Taurus molecular cloud approximately 520 light-years from Earth. Scientists have described this discovery as a rare opportunity to examine planetary formation in its earliest stages. The findings, published on November 20 in the journal Nature, highlight the peculiar dynamics of this exoplanet’s environment, including a tilted protoplanetary disk.

Details of the Discovery

The study reveals that TIDYE-1b is a gas giant with a diameter slightly smaller than Jupiter’s and a mass around 40 percent that of the largest planet in our solar system. The exoplanet orbits its host protostar every 8.8 days, a remarkably close proximity for such a young planet. According to the research team, led by Madyson Barber, a graduate student at the University of North Carolina at Chapel Hill, this discovery offers insights into the rapid formation of gas giants, which contrasts with the slower formation of terrestrial planets like Earth, as said in a statement.

A Misaligned Protoplanetary Disk

The exoplanet’s host star is encircled by a protoplanetary disk tilted at an angle of around 60 degrees relative to the planet and its star. This unexpected alignment challenges current theories of planetary formation. Andrew Mann, planetary scientist and co-author of the study, in a statement said that such misalignment is uncommon, as planets typically form within flat, aligned disks of gas and dust.

Potential Explanations and Future Research

The misalignment may be influenced by a distant companion star orbiting the protostar at about 635 astronomical units, as per reprots. However, researchers have noted that the companion star’s distance makes its impact on the disk’s tilt uncertain. Future investigations aim to explore whether TIDYE-1b continues to gather material from the disk or is losing its atmosphere due to its close orbit around the protostar.

This study marks a significant milestone in understanding planetary formation and provides a window into the early stages of celestial evolution.

Continue Reading

Science

Physicists Push Superconducting Diodes to Higher Temperatures

Published

on

By

Researchers in China have demonstrated the first high-temperature superconducting diode, operating above liquid nitrogen temperatures without magnetic fields. Using cuprate materials, the device enables clean supercurrent flow and could reduce noise in quantum computers. The breakthrough marks an important step toward practical superconducting electronics and more sta…

Continue Reading

Science

NASA’s Perseverance Rover Poised for Years of Exploration Across Jezero Crater

Published

on

By

NASA’s Perseverance rover, in excellent condition, is ready for long-term Mars exploration. Using autonomous driving, it has travelled nearly 25 miles, studied olivine-rich rocks, and collected samples revealing potential signs of past microbial life. The rover now heads to Lac de Charmes for further scientific investigation, promising years of discoveries about Mar…

Continue Reading

Science

James Webb Confirms First Runaway Supermassive Black Hole Rocking Through Space

Published

on

By

The James Webb Space Telescope has confirmed the first runaway supermassive black hole, moving at 2.2 million mph through the Cosmic Owl galaxies. Pushing a galaxy-sized shockwave and leaving a long trail of star-forming gas, this discovery confirms long-standing theories about black hole ejections and opens the door to finding more cosmic speedsters.

Continue Reading

Trending