Connect with us

Published

on

Timekeeping, a cornerstone of modern technology and daily life, is poised to achieve unprecedented accuracy due to groundbreaking research in atomic and nuclear clocks. Essential for global positioning systems (GPS), telecommunications and financial networks, the definition of a “second” has evolved over centuries. The latest innovations could lead to a redefinition of the second, enhancing accuracy across numerous applications, according to recent scientific developments.

Transition from Atomic to Nuclear Clocks

As per a report by Phys.org, the current standard for measuring a second is based on electron transitions in caesium-133 atoms, with a frequency of 9,192,631,770 Hertz. While highly precise, scientists have been exploring elements with higher transition frequencies for even greater accuracy, according to several reoorts. Strontium, with a transition frequency in the visible light range, has shown promise. As per various sources, in 2021, researchers highlighted its potential and a redefinition of the second using strontium is being considered for implementation by 2030.

In September 2024, advancements in nuclear clocks were reported by a team in the United States, marking a significant step beyond atomic timekeeping. Thorium-229, an isotope with a unique nuclear transition, was utilised in these studies. This transition, excited by ultraviolet light, has a frequency approximately one million times higher than that of caesium. Reports indicate that this advancement overcomes the previous challenge of creating a frequency comb compatible with ultraviolet light, a breakthrough enabling precise measurements at this range.

Impact on Technology and Science

Nuclear clocks, offering measurements accurate to the 19th decimal place, are expected to revolutionise technologies reliant on precision, as per reports. Applications include refined GPS systems, advanced scientific research and insights into phenomena governed by quantum mechanics and general relativity. Researchers have emphasised the potential for these clocks to enhance the measurement of ultra-fast processes, a critical factor in fields like physics and space exploration.

While caesium remains the standard for now, the strides made with thorium-229 suggest a transformative future for timekeeping technology, with far-reaching implications for science and industry, as per reports.

Continue Reading

Science

Scientists Finally Identify What Drives Venus’s Fast Winds

Published

on

By

A new study has identified the primary force behind Venus’s extreme superrotating atmosphere: a once-per-day thermal tide driven by solar heating. Using data from Venus Express and Akatsuki along with circulation models, researchers show that this daily tide transports most of the momentum that accelerates cloud-top winds to speeds over 100 metres per second. The re…

Continue Reading

Science

X-Ray Nebula Discovery Brings Astronomers Closer to Solving Cosmic Ray Mystery

Published

on

By

A new study has linked an unexplained LHAASO detection to a pulsar-powered X-ray nebula, confirming it as a rare PeVatron capable of accelerating particles to extreme energies. The discovery is a major step toward solving the long-standing mystery of galactic cosmic rays. Researchers are now combining X-ray, gamma-ray and neutrino observations to trace these powerful …

Continue Reading

Science

China’s Massive JUNO Experiment Delivers Its First World-Class Neutrino Results

Published

on

By

China’s Jiangmen Underground Neutrino Observatory has delivered world-class results after only 59 days of data collection, achieving the most precise measurements yet of two major neutrino oscillation parameters. JUNO’s early performance surpasses all previous experiments, confirming a small but intriguing discrepancy between solar and reactor neutrino observation…

Continue Reading

Trending