Connect with us

Published

on

The Nancy Grace Roman Space Telescope, a next-generation observatory by NASA, has reached a pivotal stage with the delivery of its Optical Telescope Assembly (OTA) to the Goddard Space Flight Center in Maryland. The assembly, designed and constructed by L3Harris Technologies in Rochester, New York, forms the “eye” of the telescope and is expected to significantly enhance studies of dark matter, exoplanets, and infrared astrophysics. Delivery occurred in early November, marking an essential step towards its 2027 launch.

Advanced Design for Infrared Observation

According to a report by Space.com, the OTA includes a state-of-the-art primary mirror and nine additional mirrors engineered to capture faint infrared light from distant cosmic sources. NASA officials have stated that these components, alongside structural supports and electronics, will enable unprecedented observations. J. Scott Smith, Telescope Manager at NASA’s Goddard Space Flight Center, told the publication that the complexity of the project, which required “perfection in virtually every aspect” to achieve groundbreaking scientific results.

Comparison with Previous Telescopes

The telescope, equipped with a 300-megapixel infrared camera within its Wide Field Instrument, is expected to cover vast areas of the sky at a pace unachievable by its predecessor, the Hubble Space Telescope. It was noted by Smith in Space.com that a planned survey would image 2,000 square degrees, or five percent of the sky, in just seven months—a task that would take Hubble centuries to complete.

Innovations in Engineering and Testing

Reports have highlighted the rigorous testing conducted to ensure the telescope’s stability and performance under the conditions of space. This included a month-long thermal vacuum test, simulating space’s extreme temperature and pressure. The next steps involve integrating the OTA with Roman’s structural framework, with the team confirming progress remains on schedule.

The telescope is slated for launch aboard a SpaceX Falcon Heavy rocket, with its capabilities set to advance the search for habitable planets and deepen understanding of the universe.

Continue Reading

Science

SpaceX Launches NROL-153 Mission, Deploying Next-Gen Spy Satellites

Published

on

By

SpaceX Launches NROL-153 Mission, Deploying Next-Gen Spy Satellites

Another significant mission was undertaken by SpaceX on January 9, with the deployment of a new set of spy satellites for the United States government. A Falcon 9 rocket carried the NROL-153 mission from Vandenberg Space Force Base in California, lifting off at 10:53 p.m. EST. This launch marked the seventh instalment of the National Reconnaissance Office’s (NRO) advanced satellite programme, showcasing a strategic focus on bolstering surveillance capabilities.

Launch Details and Objectives

As reported by Space.com, the NROL-153 mission contributes to the “proliferated architecture” initiative. This approach involves deploying numerous smaller satellites designed to enhance capability and resilience in reconnaissance operations. These satellites are believed to include modified versions of SpaceX’s Starlink models, potentially equipped with advanced reconnaissance technology.
The Falcon 9 rocket’s first stage executed a successful landing on the drone ship Of Course I Still Love You in the Pacific Ocean approximately eight minutes post-liftoff. As per the mission description provided by SpaceX, this marked the 22nd use of the specific booster involved in the launch.

Secrecy Surrounding Satellite Deployment

Details regarding the satellites’ operational orbit or deployment schedule were not disclosed, aligning with the NRO’s standard policy of withholding information about its classified assets. Reports indicate that the earlier six launches under this programme, conducted between May and December 2024, were also carried out by Falcon 9 rockets from the same base.

Broader Implications of the Mission

The mission is a testament to SpaceX’s role in supporting national security initiatives through its reliable and reusable rocket systems. The use of smaller, proliferated satellites signifies a shift toward adaptable and resilient surveillance strategies. The successful execution of this launch further strengthens the partnership between SpaceX and U.S. defence agencies in addressing evolving global challenges.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

16th-Century Royal Burial Treasures Found in Lithuania’s Vilnius Cathedral

Published

on

By

16th-Century Royal Burial Treasures Found in Lithuania’s Vilnius Cathedral

A remarkable discovery has been made in Lithuania’s Vilnius Cathedral, where 16th-century royal burial regalia were recovered after being concealed for nearly a century. The artefacts, including crowns, rings, chains, a sceptre, and coffin plaques, had been hidden in a crypt at the start of World War II. These treasures, once belonging to significant figures from the Grand Duchy of Lithuania and the Kingdom of Poland, provide insight into the era’s historical and cultural importance.

Discovery Details and Historical Context

According to a press release from the Vilnius Archdiocese, as reported by Live Science, the regalia were discovered on December 16, 2024, by a team of experts using an endoscopic camera to examine the cathedral’s underground chambers. The items, originally unearthed during restoration work in 1931 after a flood exposed royal sarcophagi, were hidden in 1939 for safekeeping. They include burial ornaments tied to Alexander Jagiellon, Grand Duke of Lithuania and King of Poland, along with two queens, Elisabeth of Austria and Barbara Radziwiłł.

These families played a crucial role during the Polish Renaissance. Mykolas Sotincenka, communications coordinator for the Vilnius Archdiocese, noted that these artefacts are significant due to the scarcity of authentic items from this period in Lithuania’s history.

Significance of the Regalia

Archbishop Gintaras Grušas described the regalia as “priceless historical treasures” and “exemplary works of goldsmithing and jewellery craftsmanship.” A newspaper from September 1939 was found wrapped around the artefacts, confirming their concealment during wartime. Rita Pauliukevičiūtė, director of the Vilnius Church Heritage Museum, highlighted that these symbols underscore the historical strength of Lithuania’s roots. Documentation and restoration efforts are underway, and the regalia are expected to be displayed to the public later this year.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

AI transforms auroral research, helping predict geomagnetic storms

Published

on

By

AI transforms auroral research, helping predict geomagnetic storms

A breakthrough in auroral research has been made through artificial intelligence, aiding scientists in the classification and study of northern lights. Over 700 million images of auroral phenomena have been sorted and labelled, paving the way for better forecasting of geomagnetic storms that can disrupt critical communication and security systems on Earth. The categorisation stems from NASA’s THEMIS dataset, which records images of auroras every three seconds, captured from 23 monitoring stations across North America. The advancement is expected to significantly enhance the understanding of solar wind interactions with Earth’s magnetosphere.

Dataset Categorisation and Techniques

According to reports in phys.org, researchers at the University of New Hampshire developed an innovative machine-learning algorithm that analysed THEMIS data collected between 2008 and 2022. The images were classified into six distinct categories: arc, diffuse, discrete, cloudy, moon, and clear/no aurora. The objective was to improve access to meaningful insights within the extensive historical dataset, allowing scientists to filter and analyse data efficiently.

Jeremiah Johnson, associate professor of applied engineering and sciences, stated to phys.org that the vast dataset holds crucial information about Earth’s protective magnetosphere. Its prior scale made it challenging for researchers to effectively harness its potential. This development offers a solution, enabling faster and more comprehensive studies of auroral behaviour.

Impact on Future Research

It has been suggested that the categorised database will serve as a foundational resource for ongoing and future research on auroral dynamics. With over a decade of data now organised, researchers have access to a statistically significant sample size for investigations into space-weather events and their effects on Earth’s systems.

Collaborators from the University of Alaska-Fairbanks and NASA’s Goddard Space Flight Center also contributed to this project. The use of AI in this context highlights the growing role of technology in addressing challenges posed by vast datasets in the field of space science.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Trending