Connect with us

Published

on

he world’s second-fastest supercomputer, Frontier, has successfully carried out the most extensive simulation of the universe ever created, as per reports. The project, led by Salman Habib, Director of the Computational Science Division at Argonne National Laboratory, was undertaken to test models of cosmological hydrodynamics. The simulation was developed using the Hardware/Hybrid Accelerated Cosmology Code (HACC), which has been adapted for use on some of the most advanced supercomputers available.

As per the information shared by AMD in a press release, the Frontier is capable of processing up to 1.1 exaFLOPS, equating to 1.1 quintillion operations per second. The system integrates 9,472 AMD CPUs and 37,888 AMD GPUs, making it one of the most advanced machines globally. Reports indicate that this capability was surpassed only recently by another supercomputer, El Capitan, which achieved a processing speed of 1.742 exaFLOPS at Lawrence Livermore National Laboratory.

Development of Cosmological Simulations

The HACC code, which was originally developed over a decade ago, simulates the evolution of the universe. It has previously been deployed on less powerful systems like Titan and Summit, where the simulations primarily focused on gravitational forces. However, Frontier enabled the inclusion of additional factors such as hot gas, star formation, and black hole activity. Bronson Messer, Science Director at the Oak Ridge Leadership Computing Facility, remarked in a statement that the inclusion of baryons and dynamic physics marked a significant advancement in the realism of these simulations.

Applications and Scientific Implications

As per reports, the simulations will be made available to the scientific community to test and refine cosmological models. These include questions surrounding dark matter, dark energy, and alternative theories of gravity. The research aligns with the Department of Energy’s ExaSky project, a $1.8 billion initiative supporting exascale computing for astrophysical research.

Reportedly, the study’s findings, it is anticipated, will be compared with data from large-scale astronomical surveys, such as those conducted by the Vera C. Rubin Observatory, to identify the models that best align with observable phenomena.

Continue Reading

Science

Ghostly Neutrinos May Hold the Answer to Why Matter Exists in Our Universe

Published

on

By

In a breakthrough study, scientists merged data from Japan’s T2K and the U.S. NOvA neutrino experiments to explore why matter exists in the universe. The findings improve measurements of neutrino behavior and may help reveal whether these particles break symmetry with antimatter, offering vital clues to how the universe survived after the Big Bang.

Continue Reading

Science

German Scientists Develop Laser Drill to Explore Icy Moons’ Hidden Oceans

Published

on

By

Scientists from TU Dresden have created a laser drill that vaporises ice to reach potential subsurface oceans on Europa and Enceladus. Lighter and more energy-efficient than mechanical drills, it enables deep exploration with minimal power, paving the way for studying icy worlds and their potential for extraterrestrial life.

Continue Reading

Science

Japan’s Akatsuki Spacecraft Declared Inoperable, Marking End of Dedicated Venus Missions

Published

on

By

Japan’s Akatsuki spacecraft, which studied Venus for nearly a decade, has been declared inoperable by JAXA. Successfully orbiting in 2015 after an initial failure, Akatsuki uncovered major insights into Venus’s swirling clouds and atmosphere. Its mission’s end leaves a gap until NASA’s VERITAS and DAVINCI+ missions take over.

Continue Reading

Trending