A condo complex in Northern California has installed charging for all of its 90 housing unit with an after-incentive cost of around $405 per unit – solving one of the only real problems with EV charging.
One of the main benefits of an electric vehicle is in the convenience of owning and charging the car. Instead of having to go out of your way to fuel it, you just park it at home, in the same place it spends at least 8 hours a day, and you leave the house every day with a full charge.
But this benefit only applies to those with a consistent parking space which they can easily install charging at. When talking about owners who live in apartment buildings, it can sometimes get more complicated.
While certain states have passed “right to charge” laws to give apartment-dwellers a solution for home charging, apartment charging is nevertheless a bit of a patchwork solution so far.
And so, when we heard about a condo complex that installed EV chargers for all of its units, and at an incredibly low cost of just $405 per space in one of the highest cost-of-living areas in the country, we had to find out more.
The condo complex is Woodland Creek, with 90 units in East Palo Alto, CA, in the heart of SIlicon Valley, the epicenter of electric vehicle adoption in the US.
The project was installed by Pando Electric, an EV charging company that focuses on multifamily and commercial buildings. We spoke with its CEO and founder, Aaron Li, for some insights into the project.
Pando says this is the largest “100% coverage” project in North America, but that it’s not stopping there. It’s the largest project the company has installed yet, but that record won’t stay for long.
It differs from others in that most multifamily projects will cover some percentage of available spaces, but this one decided to add outlets for every single parking spot on the property – 90 spots, each for one unit, and 2 handicap parking spots.
The chargers are small boxes, equipped with connectivity and a NEMA 14-50 outlet. Each charger doesn’t have a cable connected – that’s for the owner of the car to provide, in the form of a mobile charging connector. Most EVs either come with one of these cables, or one can be purchased separately for a few hundred dollars.
Pando says the benefit of going this route is that in a world with a wide variety of electric cars, OEM-supplied equipment will always be the most reliable, and will often come with a warranty from the vehicle manufacturer.
It also means that each owner is responsible for their own cable, which means you don’t need to have one maintenance guy on the property responsible for keeping all 90 units up and running, or people mistreating attached cables, because each person will take ownership over their own equipment and take better care of it (there’s a similar provision in the new NACS/J3400 spec that should help with public charging). And that there will be no need to update systems if charging standard change – as we’re seeing currently as the industry transitions to NACS.
Instead of adding dedicated service to each spot, Pando’s system shares electricity between all the outlets on the property. In this way, it can use 300 amps of three-phase commercial service to charge all 90 cars overnight – albeit not as quickly as if each vehicle had its own dedicated 7-10kW level 2 charger. And it said installation costs went down by 80% when connecting to communal electricity rather than adding service to each individual unit.
It accomplishes this by implementing a queue through Pando’s charging app. When a car wants to charge, you plug in, initiate a charging session through the app (or through a “tap-to-charge” NFC system), and get added to a queue. If you have a particular need for immediate charging, you can jump to the front of the queue and pay a premium (of around 20%) for faster charging. Charging costs the same amount as electricity would normally cost in the area, and your electricity usage is monitored through the Pando app.
For most owners, this queue won’t really make a difference – most people are driving some ~40 miles per day and would only need an hour or two of charging per night anyway. So the effect is the same: you get home, you plug in, and you wake up to a full charge.
And having centralized control over charging does open up possibilities for grid services. We’ve seen services like virtual power plants that are able to leverage grid-connected storage to feed the grid on demand, and Pando would like to move in that direction eventually – but its current NEMA 14-50 solution is not bidirectional-capable.
However, dynamic load management is still useful, as the system can try to deliver maximum power at times of lower demand, then scale back when demand (and prices, and grid stress) are high. Some utilities have started offering incentives for users to cut back usage at certain times (or asked everyone to cut back on usage to avoid blackouts), so a centralized system can help to manage power automatically in these situations without having to get every resident onboard.
The most impressive part about the project is the price that Pando was able to achieve. It did take advantage of a hefty utility credit from Peninsula Clean Energy, the local electric utility co-operative, which covered $2,000 per unit installed.
After that incentive, the all-in cost including the charging units themselves (~$500 each), project design, installation, conduit, permitting, labor, etc, was only $405 per unit. This is less than a month’s worth of HOA fees at the condo complex, where units cost between $500k-$1m. So, a drop in the bucket, really, in order to add new capability to every unit (and thus, better resale value, especially given the popularity of EVs in the area).
Typically, adding traditional level 2 charging can cost a lot more than that for an apartment complex, especially if there’s a need to pull more capacity from the utility (which takes more time, too, adding further to project costs). So this load-sharing method results in great benefits on cost.
And by covering every unit, residents won’t need to worry about sharing chargers, or needing to wait for upgrades if all of a sudden there are more EVs than there are spots. It future-proofs the complex so that even if everyone gets an EV (it is Silicon Valley, after all), there will still be places for them all to charge.
Electrek’s Take
I’ve long said that the only real problem with EVs is charging for people who don’t have access to their own garage. Whether this be apartment-dwellers, street-parkers or the like, the electric car charging experience is often less-than-ideal outside of single family homes, at least in North America.
There are workarounds available, like charging at work, or using Superchargers in “third places” where you often spend time, but these still aren’t optimal. The best bet is just to charge your car wherever it spends most of its time, which is your home. When you do that, EVs outshine everything in convenience.
So there’s a need for solutions in this space, and Pando’s seems like a pretty good one. There are other companies doing installations for multifamily dwellings, but we haven’t heard of one that was this cheap before. It really makes it seem economical to install these units for every single parking spot, instead of fussing about with some smaller percentage of units and having to do additional upgrades later.
The one problem with it that I see is that it’s attached to an app. While Pando says that it’s worked to ensure the app is reliable even if the system goes down (e.g., it communicates locally instead of needing to connect to the internet at all times), an app is just an unnecessary step after plugging in that I’d like to see removed.
Pando says that it’s working on bringing a “plug-and-charge-like experience” to using its chargers – which I’d imagine would be possible by doing local bluetooth communication with a phone when a charging session is started, much like the phone-as-key system on Teslas and some other EVs these days. You’d still need an app, you just wouldn’t need to open it every time, which would be good enough in my opinion.
But overall, I’m quite excited about this project, because it solves a big problem, and I cant wait to see more multifamily communities install something like this. And, frankly, we also need legislation/building codes to hop in and require this sort of thing, so it becomes the rule rather than the exception and apartment dwellers can feel secure that they’ll be able to find a place to charge – and if install costs can get as low as $405/unit, that makes a regulatory answer much more possible.
But if you *do* have your own garage and roof, consider charging your electric vehicle at home using rooftop solar panels. Find a reliable and competitively priced solar installer near you on EnergySage, for free. They have pre-vetted installers competing for your business, ensuring high-quality solutions and 20-30% savings. It’s free, with no sales calls until you choose an installer. Compare personalized solar quotes online and receive guidance from unbiased Energy Advisers. Get started here. – ad*
FTC: We use income earning auto affiliate links.More.
A stack of old mobile phones are seen before recycling process in Kocaeli, Turkiye on October 14, 2024.
Anadolu | Anadolu | Getty Images
As the U.S. and China vie for economic, technological and geopolitical supremacy, the critical elements and metals embedded in technology from consumer to industrial and military markets have become a pawn in the wider conflict. That’s nowhere more so the case than in China’s leverage over the rare earth metals supply chain. This past week, the Department of Defense took a large equity stake in MP Materials, the company running the only rare earths mining operation in the U.S.
But there’s another option to combat the rare earths shortage that goes back to an older idea: recycling. The business has come a long way from collecting cans, bottles, plastic, newspaper and other consumer disposables, otherwise destined for landfills, to recreate all sorts of new products.
Today, next-generation recyclers — a mix of legacy companies and startups — are innovating ways to gather and process the ever-growing mountains of electronic waste, or e-waste, which comprises end-of-life and discarded computers, smartphones, servers, TVs, appliances, medical devices, and other electronics and IT equipment. And they are doing so in a way that is aligned to the newest critical technologies in society. Most recently, spent EV batteries, wind turbines and solar panels are fostering a burgeoning recycling niche.
The e-waste recycling opportunity isn’t limited to rare earth elements. Any electronics that can’t be wholly refurbished and resold, or cannibalized for replacement parts needed to keep existing electronics up and running, can berecycled to strip out gold, silver, copper, nickel, steel, aluminum, lithium, cobalt and other metals vital to manufacturers in various industries. But increasingly, recyclers are extracting rare-earth elements, such as neodymium, praseodymium, terbium and dysprosium, which are critical in making everything from fighter jets to power tools.
“Recycling [of e-waste] hasn’t been taken too seriouslyuntil recently” as a meaningful source of supply, said Kunal Sinha, global head of recycling at Swiss-based Glencore, a major miner, producer and marketer of metals and minerals — and, to a much lesser but growing degree, an e-waste recycler. “A lot of people are still sleeping at the wheel and don’t realize how big this can be,” Sinha said.
Traditionally, U.S. manufacturers purchase essential metals and rare earths from domestic and foreign producers — an inordinate number based in China — that fabricate mined raw materials, or through commodities traders. But with those supply chains now disrupted by unpredictable tariffs, trade policies and geopolitics, the market for recycled e-waste is gaining importance as a way to feed the insatiable electrification of everything.
“The United States imports a lot of electronics, and all of that is coming with gold and aluminum and steel,” said John Mitchell, president and CEO of the Global Electronics Association, an industry trade group. “So there’s a great opportunity to actually have the tariffs be an impetus for greater recycling in this country for goods that we don’t have, but are buying from other countries.”
With copper, other metals, ‘recycling is going to play huge role’
Although recycling contributes only around $200 million to Glencore’s total EBITDA of nearly $14 billion, the strategic attention and time the business gets from leadership “is much more than that percentage,” Sinha said. “We believe that a lot of mining is necessary to get to all the copper, gold and other metals that are needed, but we also recognize that recycling is going to play a huge role,” he said.
Glencore has operated a huge copper smelter in Quebec, Canada, for almost 20 years on a site that’s nearly 100-years-old. The facility processes mostly mined copper concentrates, though 15% of its feedstock is recyclable materials, such as e-waste that Glencore’s global network of 100-plus suppliers collect and sort. The smelter pioneered the process for recovering copper and precious metals from e-waste in the mid 1980s, making it one of the first and largest of its type in the world. The smelted copper is refined into fresh slabs that are sold to manufacturers and traders. The same facility also produces refined gold, silver, platinum and palladium recovered from recycling feeds.
The importance of copper to OEMs’ supply chains was magnified in early July, when prices hit an all-time high after President Trump said he would impose a 50% tariff on imports of the metal. The U.S. imports just under half of its copper, and the tariff hike — like other new Trump trade policies — is intended to boost domestic production.
Stock Chart IconStock chart icon
Price of copper year-to-date 2025.
It takes around three decades for a new mine in the U.S. to move from discovery to production, which makes recycled copper look all the more attractive, especially as demand keeps rising. According to estimates by energy-data firm Wood Mackenzie, 45% of demand will be met with recycled copper by 2050, up from about a third today.
Foreign recycling companies have begun investing in the U.S.-based facilities. In 2022, Germany’s Wieland broke ground on a $100-million copper and copper alloy recycling plant in Shelbyville, Kentucky. Last year, another German firm, Aurubis, started construction on an $800-million multi-metal recycling facility in Augusta, Georgia.
“As the first major secondary smelter of its kind in the U.S., Aurubis Richmond will allow us to keep strategically important metals in the economy, making U.S. supply chains more independent,” said Aurubis CEO Toralf Haag.
Massive amounts of e-waste
The proliferation of e-waste can be traced back to the 1990s, when the internet gave birth to the digital economy, spawning exponential growth in electronically enabled products. The trend has been supercharged by the emergence of renewable energy, e-mobility, artificial intelligence and the build-out of data centers. That translates to a constant turnover of devices and equipment, and massive amounts of e-waste.
In 2022, a record 62 million metric tons of e-waste were produced globally, up 82% from 2010, according to the most recent estimates from the United Nations’ International Telecommunications Union and research arm UNITAR. That number is projected to reach 82 million metric tons by 2030.
The U.S., the report said, produced just shy of 8 million tons of e-waste in 2022. Yet only about 15-20% of it is properly recycled, a figure that illustrates the untapped market for e-waste retrievables. The e-waste recycling industry generated $28.1 billion in revenue in 2024, according to IBISWorld, with a projected compound annual growth rate of 8%.
Whether it’s refurbished and resold or recycled for metals and rare-earths, e-waste that stores data — especially smartphones, computers, servers and some medical devices — must be wiped of sensitive information to comply with cybersecurity and environmental regulations. The service, referred to as IT asset disposition (ITAD), is offered by conventional waste and recycling companies, including Waste Management, Republic Services and Clean Harbors, as well as specialists such as Sims Lifecycle Services, Electronic Recyclers International, All Green Electronics Recycling and Full Circle Electronics.
“We’re definitely seeing a bit of an influx of [e-waste] coming into our warehouses,” said Full Circle Electronics CEO Dave Daily, adding, “I think that is due to some early refresh cycles.”
That’s a reference to businesses and consumers choosing to get ahead of the customary three-year time frame for purchasing new electronics, and discarding old stuff, in anticipation of tariff-related price increases.
Daily also is witnessing increased demand among downstream recyclers for e-waste Full Circle Electronics can’t refurbish and sell at wholesale. The company dismantles and separates it into 40 or 50 different types of material, from keyboards and mice to circuit boards, wires and cables. Recyclers harvest those items for metals and rare earths, which continue to go up in price on commodities markets, before reentering the supply chain as core raw materials.
Even before the Trump administration’s efforts to revitalize American manufacturing by reworking trade deals, and recent changes in tax credits key to the industry in Trump’s tax and spending bill, entrepreneurs have been launching e-waste recycling startups and developing technologies to process them for domestic OEMs.
“Many regions of the world have been kind of lazy about processing e-waste, so a lot of it goes offshore,” Sinha said. In response to that imbalance, “There seems to be a trend of nationalizing e-waste, because people suddenly realize that we have the same metals [they’ve] been looking for” from overseas sources, he said. “People have been rethinking the global supply chain, that they’re too long and need to be more localized.”
China commands 90% of rare earth market
Several startups tend to focus on a particular type of e-waste. Lately, rare earths have garnered tremendous attention, not just because they’re in high demand by U.S. electronics manufacturers but also to lessen dependence on China, which dominates mining, processing and refining of the materials. In the production of rare-earth magnets — used in EVs, drones, consumer electronics, medical devices, wind turbines, military weapons and other products — China commands roughly 90% of the global supply chain.
The lingering U.S.–China trade war has only exacerbated the disparity. In April, China restricted exports of seven rare earths and related magnets in retaliation for U.S. tariffs, a move that forced Ford to shut down factories because of magnet shortages. China, in mid-June, issued temporary six-month licenses to certain major U.S. automaker suppliers and select firms. Exports are flowing again, but with delays and still well below peak levels.
The U.S. is attempting to catch up. Before this past week’s Trump administration deal, the Biden administration awarded $45 million in funding to MP Materials and the nation’s lone rare earths mine, in Mountain Pass, California. Back in April, the Interior Department approved development activities at the Colosseum rare earths project, located within California’s Mojave National Preserve. The project, owned by Australia’s Dateline Resources, will potentially become America’s second rare earth mine after Mountain Pass.
A wheel loader takes ore to a crusher at the MP Materials rare earth mine in Mountain Pass, California, U.S. January 30, 2020. Picture taken January 30, 2020.
Steve Marcus | Reuters
Meanwhile, several recycling startups are extracting rare earths from e-waste. Illumynt has an advanced process for recovering them from decommissioned hard drives procured from data centers. In April, hard drive manufacturer Western Digital announced a collaboration with Microsoft, Critical Materials Recycling and PedalPoint Recycling to pull rare earths, as well as copper, gold, aluminum and steel, from end-of-life drives.
Canadian-based Cyclic Materials invented a process that recovers rare-earths and other metals from EV motors, wind turbines, MRI machines and data-center e-scrap. The company is investing more than $20 million to build its first U.S.-based facility in Mesa, Arizona. Late last year, Glencore signed a multiyear agreement with Cyclic to provide recycled copper for its smelting and refining operations.
Another hot feedstock for e-waste recyclers is end-of-life lithium-ion batteries, a source of not only lithium but also copper, cobalt, nickel, manganese and aluminum. Those materials are essential for manufacturing new EV batteries, which the Big Three automakers are heavily invested in. Their projects, however, are threatened by possible reductions in the Biden-era 45X production tax credit, featured in the new federal spending bill.
It’s too soon to know how that might impact battery recyclers — including Ascend Elements, American Battery Technology, Cirba Solutions and Redwood Materials — who themselves qualify for the 45X and other tax credits. They might actually be aided by other provisions in the budget bill that benefit a domestic supply chain of critical minerals as a way to undercut China’s dominance of the global market.
Nonetheless, that looming uncertainty should be a warning sign for e-waste recyclers, said Sinha. “Be careful not to build a recycling company on the back of one tax credit,” he said, “because it can be short-lived.”
Investing in recyclers can be precarious, too, Sinha said. While he’s happy to see recycling getting its due as a meaningful source of supply, he cautions people to be careful when investing in this space. Startups may have developed new technologies, but lack good enough business fundamentals. “Don’t invest on the hype,” he said, “but on the fundamentals.”
Glencore, ironically enough, is a case in point. It has invested $327.5 million in convertible notes in battery recycler Li-Cycle to provide feedstock for its smelter. The Toronto-based startup had broken ground on a new facility in Rochester, New York, but ran into financial difficulties and filed for Chapter 15 bankruptcy protection in May, prompting Glencore to submit a “stalking horse” credit bid of at least $40 million for the stalled project and other assets.
Even so, “the current environment will lead to more startups and investments” in e-waste recycling, Sinha said. “We are investing ourselves.”
LiveWire, the electric motorcycle company that was spun out of Harley-Davidson several years ago, has just shown off two fun-sized electric motorcycles designed to make powered two-wheelers more accessible to new riders, both physically and financially.
The company took to HD Homecoming, a motorcycle festival in Milwaukee, to give a surprise unveiling of the new bikes.
The bikes, which wear what look to be smaller 12″ tires and offer a barely 30″ (76 cm) seat height, are smaller and nimbler than anything we’ve seen from LiveWire before.
But that doesn’t mean they can’t perform. These aren’t some 30 mph (48 km/h) mopeds. LiveWire confirmed that early testing shows respectable performance figures of around 53 mph (85 km/h) speeds and 100 miles (160 km) of range from the pair of removable batteries.
Advertisement – scroll for more content
I’m assuming that range is measured at a lower urban speed, but these appear to be purpose-built to give riders the capability to ride where and how they want at a much more affordable price than LiveWire has ever offered.
Showing off both a trail and a street version, the LiveWire seems to be covering all of its bases.
“The trail model is intended for riding backyards, pump tracks, or even out on the ranch or campgrounds,” the brand explained. “The street model is perfect for urban errands, new riders, mini-moto fans, and anyone looking for a new hobby in the form of a readily customizable, approachable electric moto experience.”
LiveWire hasn’t shared any pricing details yet, and the two models are understood to still be in their development phase, but the advanced stages of the designs mean we likely won’t have to wait too much longer.
And with most of LiveWire’s current electric motorcycle models in the $16k- $17k, these bikes could conceivably cost less than half of that figure, changing the equation for young riders who can’t afford a luxury ride.
Electrek’s Take
Of course, they had to do this unveiling at the exact time that I was banging out a multi-thousand-word treatise bemoaning the fact that LiveWire hadn’t launched any smaller models yet. Hmmm, maybe it’s time for an article about how the e-bike industry needs a single battery standard.
Anyway, I’m all-in on this! I can’t even describe how excited this news makes me! This is an important step for LiveWire’s growth because the kind of folks who are drawn to electric motorcycles are often a different market than that sought by traditional legacy motorcycle manufacturers. LiveWire’s existing models are impressive, both in their extreme performance and their design, but they’re still powerhouses that provide more kick than most riders probably need.
These new mini e-motos could be exactly what new riders are looking for. Consider all the teens and young adults ripping it up on Sur Rons in towns across the US right now. Those Sur Rons aren’t street-legal bikes and they were never meant for the riding they’re most commonly being used for. But a street bike in a fun little Grom form factor like LiveWire is showing off? It could scratch that itch and also provide riders with the safety and support of a motorcycle company that comes from a storied history of over 100 years of motorcycle design, all from a new brand like LiveWire that speaks young riders’ language.
And that trail version – same thing. It’s going to offer the fun off-road riding that so many are looking for, yet do it in a well-designed package that isn’t just produced by some nameless factory in China trying to eke out the best profit margin.
FTC: We use income earning auto affiliate links.More.
Forget fumbling with cables or hunting for batteries – TILER is making electric bike charging as seamless as parking your ride. The Dutch startup recently introduced its much-anticipated TILER Compact system, a plug-and-play wireless charger engineered to transform the user experience for e-bike riders.
At the heart of the new system is a clever combo: a charging kickstand that mounts directly to almost any e‑bike, and a thin charging mat that you simply park over. Once you drop the kickstand and it lands on the mat, the bike begins charging automatically via inductive transfer – no cable required. According to TILER, a 500 Wh battery will fully charge in about 3.5 hours, delivering comparable performance to traditional wired chargers.
It’s an elegantly simple concept (albeit a bit chunky) with a convenient upside: less clutter, fewer broken cables, and no more need to bend over while feeling around for a dark little hole.
TILER claims its system works with about 75% of existing e‑bike platforms, including those from Bosch, Yamaha, Bafang, and other big bames. The kit uses a modest 150 W wireless power output, which means charging speeds remain practical while keeping the system lightweight (the tile weighs just 2 kg, and it’s also stationary).
Advertisement – scroll for more content
TILER has already deployed over 200 charging points across Western Europe, primarily serving bike-share, delivery, hospitality, and hotel fleets. A recent case study in Munich showed how a cargo-bike operator saved approximately €1,250 per month in labor costs, avoided thousands in spare batteries, and cut battery damage by 20%. The takeaway? Less maintenance, more uptime.
Now shifting to prosumer markets, TILER says the Compact system will hit pre-orders soon, with a €250 price tag (roughly US $290) for the kickstand plus tile bundle. To get in line, a €29 refundable deposit is currently required, though they say it is refundable at any point until you receive your charger. Don’t get too excited just yet though, there’s a bit of a wait. Deliveries are expected in summer 2026, and for now are covering mostly European markets.
The concept isn’t entirely new. We’ve seen the idea pop up before, including in a patent from BMW for charging electric motorcycles. And the efficacy is there. Skeptics may wonder if wireless charging is slower or less efficient, but TILER says no. Its system retains over 85% efficiency, nearly matching wired charging speeds, and even pauses at 80% to protect battery health, then resumes as needed. The tile is even IP67-rated, safe for outdoor use, and about as bulky as a thick magazine.
Electrek’s Take
I love the concept. It makes perfect sense for shared e-bikes, especially since they’re often returning to a dock anyway. As long as people can be trained to park with the kickstand on the tile, it seems like a no-brainer.
And to be honest, I even like the idea for consumers. I know it sounds like a first-world problem, but bending over to plug something in at floor height is pretty annoying, not to mention a great way to throw out your back if you’re not exactly a spring chicken anymore. Having your e-bike start charging simply by parking it in the right place is a really cool feature! I don’t know if it’s $300 cool, but it’s pretty cool!
FTC: We use income earning auto affiliate links.More.