Connect with us

Published

on

Researchers from the Alfred Wegener Institute (AWI) have highlighted a significant decline in the Earth’s planetary albedo as a possible cause of the sharp rise in global temperatures in 2023. This decline, tied to a reduction in low-altitude clouds, has been identified as a key factor contributing to the global mean temperature increase of nearly 1.5 degrees Celsius above pre-industrial levels—a record-breaking figure. According to Dr Helge Goessling, climate modeller at AWI and lead author of the study, in a statement, this phenomenon has created an “explanation gap” of 0.2 degree Celsius in the recorded temperature rise that existing factors like greenhouse gases, El Niño, and volcanic activity fail to address.

Low Cloud Decline and Reflectivity Loss

The study was published in Science. The research has pointed to a marked reduction in low-altitude cloud cover, particularly in the northern mid-latitudes and tropics, as a primary driver of reduced planetary albedo. Dr Thomas Rackow, a co-author of the study, noted in a statement that in AWI’s release, 2023 saw the lowest levels of planetary albedo since at least 1940, according to data from NASA and the European Centre for Medium-Range Weather Forecasts (ECMWF). Albedo is a measure of the Earth’s reflectivity, with less sunlight being reflected back into space, contributing to further warming.

Implications of the Findings

The decline in low-altitude clouds, which offer a cooling effect by reflecting sunlight, contrasts with higher clouds that trap heat, intensifying the warming effect. Stricter marine fuel regulations, reducing aerosol concentrations that aid cloud formation, and oceanic changes have been proposed as contributing factors. However, Dr Goessling has suggested that feedback loops between global warming and low cloud reduction may play a significant role.

The findings underscore the urgency of revising global carbon budgets and implementing adaptation measures, as warming beyond the 1.5 degree Celsius threshold outlined in the Paris Agreement may occur sooner than anticipated, as per reports. Climate researchers continue to stress the critical need for immediate action to address these compounding challenges.

Continue Reading

Science

New Shortcut Lets Scientists Run Complex Quantum Models on a Laptop

Published

on

By

A University at Buffalo team has redesigned the truncated Wigner approximation into an easy, plug-and-play template that lets scientists run complex quantum simulations on everyday laptops. The method works for open systems, slashes computing demands, and helps free supercomputers for the hardest quantum problems.

Continue Reading

Science

Glaciers Speed Up in Summer and Slow in Winter, New Global Map Reveals

Published

on

By

A new global map of glacier speeds, built from nearly a decade of satellite observations, shows that glaciers consistently move faster in summer and slower in winter. Meltwater acts as a natural lubricant, accelerating flow during warm months. Scientists warn that glaciers with strong seasonal shifts are likely to speed up long-term, adding to future sea-level rise.

Continue Reading

Science

Engineers Turn Lobster Shells Into Robot Parts That Lift, Grip and Swim

Published

on

By

Engineers have transformed discarded crustacean shells into functional biohybrid robots by softening the shell segments, adding elastomers, and attaching motors. These recycled structures can lift weight, grasp delicate items, and even propel small swimmers. The project demonstrates how food waste can become a sustainable robotics resource, though challenges remain wi…

Continue Reading

Trending