Connect with us

Published

on

A recent study published in Nature has detailed a major achievement by Google’s Quantum AI team. Their latest quantum processor, named “Willow,” solved a computational problem in five minutes that would have taken the world’s most advanced supercomputer an estimated 10 septillion years. This achievement marks significant progress in overcoming one of the greatest challenges in quantum computing — reducing errors as the machines scale.

Breakthrough in Quantum Error Correction

Quantum computers are known for their high error rates, where approximately one in 1,000 qubits fail during calculations. In comparison, traditional computers experience failures in only one out of a billion billion bits. This discrepancy has made error-correction methods critical for advancing the technology. The Willow processor, which contains 105 physical qubits, employs error-correcting technologies that reduce inaccuracies as more qubits are added, an achievement first theorised by computer scientist Peter Shor in 1995.

Google Quantum AI’s Julian Kelly, director of quantum hardware, told Live Science that the team’s focus has been on achieving a state where fewer errors are introduced than are corrected. The Willow processor’s design integrates physical qubits into “logical qubits,” enabling calculations to proceed even if individual qubits fail.

Through advancements in machine learning, device fabrication, and calibration techniques, the team reported coherence times of up to 100 microseconds — five times better than their previous Sycamore processor, the researchers stated in the study.

Path to Practical Applications

The team’s immediate goal is to construct a logical qubit with an error rate of one in a million, requiring 1,457 physical qubits. Once achieved, their efforts will shift towards connecting multiple logical qubits to solve real-world problems. While the Willow processor has demonstrated exponential error reduction, scientists aim to move beyond benchmarks and focus on practical computations that extend the capabilities of quantum machines.

This progress, as highlighted in the study and expert discussions, indicates a path forward for quantum computing to outperform classical systems in diverse applications.

Continue Reading

Science

DNA Cassette Tapes Could Transform the Future of Digital Storage

Published

on

By

Researchers in China have developed a DNA “cassette tape” that stores data at densities far beyond current drives. By encoding digital files into DNA strands embedded on tape, the system allows compact, sustainable archival storage. A 100-meter DNA tape could hold 36 petabytes, reshaping the future of data centers.

Continue Reading

Science

Researchers Create Metal That Resists Cracking in Deep Space Cold

Published

on

By

Researchers have engineered a cobalt-nickel-vanadium alloy that stays tough even at –186°C, resisting the brittleness that plagues most metals in extreme cold. Using atomic-scale design, the team created dual structural patterns inside the alloy that block cracks and preserve ductility. In lab tests, the metal absorbed far more strain than conventional steels.

Continue Reading

Science

Researchers Reconstruct 2,500-Year-Old Faces From Skulls Found in Tamil Nadu

Published

on

By

Researchers reconstructed lifelike faces from 2,500-year-old skulls found at Kondagai, Tamil Nadu. Linked to Keeladi’s Iron Age city, the portraits highlight advanced water systems, early Tamil script, and brick houses. The reconstructions provide a rare human link to South India’s sophisticated ancient urban culture.

Continue Reading

Trending