Connect with us

Published

on

A significant advancement in antenna design, with implications for 6th generation (6G) networks, has been reported by researchers from the City University of Hong Kong (CityUHK). A study, published in Nature Communications, describes a new metasurface antenna capable of generating and controlling multiple frequency components simultaneously through software, potentially revolutionising wireless communication systems.

Led by Professor Chan Chi-hou, Chair Professor in the Department of Electrical Engineering at CityUHK, the research introduces a concept referred to as a “synthetic moving-envelope” metasurface. The design enables antennas to independently manage arbitrary harmonic frequencies and wave properties, an achievement not previously demonstrated. Reports suggest this innovation may enhance data transmission capacity and provide advanced functionality for real-time imaging, wireless power transfer, and secure communication systems essential for future networks.

Key Features and Applications

According to the study, the technology allows for the simultaneous transmission of multiple signals in different directions, increasing channel efficiency. As per the research team, this capability holds particular importance for 6G networks, where integration of communication and sensing technologies is crucial.

The antenna’s ability to achieve spectral control via a simple coding strategy was highlighted by Professor Chan, who also serves as Director of the State Key Laboratory of Terahertz and Millimetre Waves. Professor Wu Gengbo, another researcher involved in the project, indicated that the system’s 1-bit coding approach and sideband-proof design offer compatibility with on-chip integration. Potential uses could extend beyond communications to include cognitive radar, integrated photonics, and even quantum science.

A Step Towards 6G Networks

As detailed in the report, this development represents a departure from conventional fixed-parameter antennas, opening possibilities for more dynamic and efficient systems. While practical applications remain under exploration, the metasurface antenna’s innovative approach is seen as a critical step towards enabling the advanced communication demands of 6G.

Continue Reading

Science

Nearby Super-Earth GJ 251 c Could Help Learn About Worlds That Once Supported Life, Astronomers Say

Published

on

By

Astronomers discovered GJ 251 c, a super-Earth 20 light-years away. Its location in the habitable zone and rocky composition make it a top candidate for future searches for life beyond our solar system. The team, led by Suvrath Mahadevan and Corey Beard, said this discovery provides a clock for one of the best candidates to search for life’s atmospheric signs in 5…

Continue Reading

Science

James Webb Telescope May Have Spotted First Generation of Stars in the Universe

Published

on

By

Astronomers using JWST may have discovered Population III stars in cluster LAP1-B, offering new insights into early galaxy formation and the universe’s first luminous objects. JWST observations suggest Population III stars may have formed 13 billion years ago, helping trace early galaxies. These stars might be building blocks for larger galaxies as well, making it…

Continue Reading

Science

Blue Origin Joins SpaceX in Orbital Booster Reuse Era With New Glenn’s Successful Launch and Landing

Published

on

By

Blue Origin’s New Glenn successfully launched NASA’s ESCAPADE mission to Mars on November 13, 2025, marking its second flight and its first ocean booster landing on the ship Jacklyn. The mission deploys twin satellites built by Rocket Lab to study how the solar wind strips Mars’ atmosphere during a 22-month journey to the Red Planet.

Continue Reading

Trending