Connect with us

Published

on

A new study conducted at the University of Toronto has showcased experimental evidence of “negative time” in the quantum realm. While this concept has intrigued scientists for years, it has primarily been dismissed as a theoretical anomaly. The findings, which remain unpublished in a peer-reviewed journal, have sparked significant attention within the global scientific community after being shared on the preprint server arXiv. Researchers have clarified that this phenomenon, while perplexing, does not alter the broader understanding of time but instead highlights the peculiarities of quantum mechanics.

Insights Into the Experiment

Led by Daniela Angulo, an experimental physicist at the University of Toronto, the research team focused on interactions between light and matter. By measuring the behaviour of photons as they passed through atoms, the scientists observed that the atoms entered a higher-energy state, only to return to their normal state almost instantaneously. This change in energy duration was quantified, revealing a negative time interval.

Aephraim Steinberg, a professor of experimental quantum physics at the university, explained during a press interaction that while the findings might suggest particles travel back in time, this interpretation would be incorrect. Instead, the results demonstrate the probabilistic behaviour of quantum particles, which challenges traditional understandings of time.

Scientific and Public Reactions

This discovery has drawn both fascination and scepticism. Prominent physicist Sabine Hossenfelder criticised the interpretation in a widely-viewed video, asserting that the phenomenon described relates to photon travel and phase shifts rather than the passage of time. In response, the researchers emphasised the importance of exploring the complexities of quantum mechanics to better understand anomalies like these.

Steinberg acknowledged the controversy surrounding their approach but defended their interpretation of the results. He stated, according to reports, that while immediate practical applications are not apparent, the research could open doors to further investigation of quantum phenomena.

Continue Reading

Science

Battery Breakthrough Could Make Solar Panels Cheaper and More Powerful

Published

on

By

Researchers in China have set a new 27.2 percent efficiency record for perovskite solar cells by fixing chlorine-ion clumping, a major barrier to performance. Their simple potassium-based method creates a uniform film and boosts long-term stability, marking a major step toward commercial adoption and more reliable low-cost solar energy.

Continue Reading

Science

Interstellar Comet 3I/ATLAS Photographed Beside Distant Galaxy in Rare Cosmic Shot

Published

on

By

A new image of interstellar comet 3I/ATLAS captures its glowing tails and a distant barred spiral galaxy, creating a dramatic cosmic overlap. Astronomers say the comet’s unusual features remain natural despite online speculation. With its closest Earth approach in December, researchers are preparing for sharper spacecraft images expected to reveal even more detail.

Continue Reading

Science

ESA’s Euclid Telescope Charts Over a Million Galaxies in Landmark First Data

Published

on

By

ESA’s Euclid space telescope has captured about 1.2 million galaxies in its first year, providing one of the most detailed wide-field surveys of the universe ever made. Covering distances up to 10 billion light-years, Euclid’s clear, expansive imaging is helping astronomers study galaxy shapes, mergers, dwarf galaxy populations, and the role of supermassive black …

Continue Reading

Trending