Connect with us

Published

on

In a study published in IEEE Access on October 15, researchers have highlighted the potential of using skin conductance to detect human emotions. The study examined how variations in sweat levels, which alter the skin’s ability to conduct electricity, could provide insights into emotional states. According to the findings, these physiological responses, triggered by emotions like fear, humour, or familial bonding, could pave the way for more emotionally intelligent technology in the future.

Skin Conductance and Emotion Analysis

The research was carried out by scientists from Tokyo Metropolitan University. During the study, 33 participants were shown videos designed to evoke specific emotions, ranging from horror scenes to family reunion clips. Measurements were taken using probes attached to their fingers. These probes recorded how quickly skin conductance peaked and returned to baseline. Distinct patterns were identified, with fear responses persisting the longest, while humour elicited quicker but shorter-lived reactions.

The team explained in their report that fear’s prolonged response might be tied to evolutionary survival mechanisms, while the mixed nature of family bonding emotions appeared to create slower, overlapping reactions. They also noted that limited studies have explored the dynamics of skin conductance associated with humour and fear.

Potential Applications and Challenges

As per the report, combining skin conductance data with other physiological signals, such as heart rate or brain activity, could significantly enhance the accuracy of emotion detection. While this research does not directly involve robotics, the findings are considered foundational for integrating emotion-detection capabilities into future technologies. Hypothetical applications include stress-responsive smart devices or media platforms that adapt to user moods.

Conventional methods of emotion detection often rely on facial recognition or voice analysis, which can be prone to errors and raise privacy concerns. The researchers suggest that skin conductance may offer a more reliable and less invasive alternative.

For the study, the team highlighted a growing interest in leveraging physiological signals for emotionally intelligent services, indicating potential advancements in personalised technologies.

Continue Reading

Science

NASA’s Artemis II Astronauts Will Double as Test Subjects for Deep Space Health Research

Published

on

By

NASA’s Artemis II mission will send astronauts beyond low Earth orbit as both scientists and volunteer test subjects. The crew will conduct health, radiation, and lunar studies, providing vital data to protect future explorers. Results will guide safety protocols for lunar and Mars missions, advancing human readiness for long-duration deep space exploration.

Continue Reading

Science

Black Hole Kicked Away? Gravitational Waves Reveal Einstein’s Ripples in Spacetime

Published

on

By

Astronomers have, for the first time, measured the recoil speed and direction of a newborn black hole using gravitational waves. Data from the 2019 event GW190412 revealed the remnant shot away at 50 km/s. This breakthrough shows gravitational waves can reconstruct full 3D motion, offering new ways to connect black hole mergers with light signals.

Continue Reading

Science

Canadian Startup Qubic Unveils Cryogenic Amplifier That Could Transform Quantum Computing

Published

on

By

Qubic Technologies has developed a cryogenic amplifier that slashes heat emissions in quantum computers by 10,000 times. Expected to launch in 2026, the breakthrough could shrink cooling demands, reduce costs, and boost system efficiency. Experts suggest it may help overcome barriers to scalability, pushing quantum machines closer to commercial deployment.

Continue Reading

Trending