Connect with us

Published

on

As researchers delve into the cosmos, organic molecules—the building blocks of life—emerge as a recurring theme, hinting at answers to some of science’s most profound questions. Recent studies, including data from missions like the European Space Agency’s Rosetta and NASA’s Osiris-Rex, continue to reveal the ubiquity of these compounds across the universe. According to reports, these discoveries shed light on how planets like Earth may have acquired the raw materials for life long before the Sun formed.

Cosmic Origins of Organic Molecules

As reported in Quanta Magazine, researchers have traced these molecules to interstellar clouds, comets and asteroids. These celestial objects serve as reservoirs for the compounds that constitute biological systems. Rosetta’s mission to comet 67P/Churyumov-Gerasimenko detected 44 distinct organic molecules, including glycine—a precursor to proteins—and dimethyl sulfide, a compound associated with biological activity on Earth. Such findings emphasise that life’s precursors existed in space long before planets formed.

Asteroids: Organic Richness

Asteroids also harbor an abundance of organic materials. Studies of samples returned by Japan’s Hayabusa2 and NASA’s Osiris-Rex missions revealed tens of thousands of organic compounds on asteroids Ryugu and Bennu. According to Philippe Schmitt-Kopplin of the Technical University of Munich, in a statement to Quanta Magazine, this demonstrates that “everything possible from which life could emerge” exists in space. Ryugu, for example, yielded 15 amino acids, crucial for life’s building blocks.

Molecular Evolution in Space

Organic molecules form through two primary pathways: combustion-like reactions in dying stars and on icy dust grains in molecular clouds. In the latter process, radiation and cosmic rays trigger the formation of molecules like methanol on these icy grains. Research demonstrated that glycine, the simplest amino acid, can form under such conditions, underscoring the molecular complexity present even before star systems emerged.

Organic Molecules in Planetary Birthplaces

Protoplanetary disks, the regions where stars and planets form, are rich with organic compounds. Observations from the Atacama Large Millimeter Array (ALMA) have identified methanol and other molecules in these disks. Computational models suggest these compounds survive the chaotic processes of planetary formation and continue to evolve chemically, enhancing the potential for life.

Clues for Astrobiology

The discovery of complex organics has profound implications for astrobiology. These molecules may serve as biosignatures, pointing to potential life beyond Earth. Upcoming missions like NASA’s Dragonfly to Saturn’s moon Titan aim to explore organic compounds in environments conducive to life, such as hydrocarbon lakes and thick atmospheres.

Ultimately, the universality of organic chemistry reinforces the idea that life’s building blocks are not unique to Earth, offering hope that life may exist elsewhere in the universe.

Continue Reading

Science

Newly Confirmed Super-Earth HD 20794 d May Support Life in Habitable Zone

Published

on

By

Newly Confirmed Super-Earth HD 20794 d May Support Life in Habitable Zone

A super-Earth has been confirmed in the habitable zone of a nearby star, raising possibilities for future studies on potentially life-supporting planets. The discovery follows over two decades of observations and has been credited to a team of international researchers. Initially detected two years ago, the planet, named HD 20794 d, is situated 20 light years from Earth and has a mass six times that of Earth. Scientists suggest its orbit places it at an optimal distance from its star to sustain liquid water, a key factor for habitability.

Observational Data Confirms Planet’s Existence

According to a study published in Astronomy & Astrophysics, HD 20794 d was first identified as a possible exoplanet by Dr. Michael Cretignier from the University of Oxford in 2022. Data from the HARPS (High Accuracy Radial Velocity Planet Searcher) spectrograph at the La Silla Observatory in Chile indicated periodic shifts in the light spectrum of the host star, suggesting gravitational influence from an orbiting planet. However, initial findings lacked definitive confirmation due to the faintness of the signal, which led to doubts over whether the anomaly was planetary, instrumental, or caused by stellar activity.

To validate the discovery, data spanning over 20 years from both HARPS and ESPRESSO, an advanced spectrograph also based in Chile, were analysed. As reported by phys.org, Dr. Cretignier said that they have worked on data analysis for years and are gradually analysing and eliminating all possible sources of contamination. The confirmation required advanced processing techniques to separate the planetary signal from background interference.

Implications for Future Space Missions

Dr. Cretignier expressed both excitement and relief upon confirmation of the planet. He stated that great joy was naturally felt when the planet’s existence could be confirmed. Relief was also experienced, as the original signal had been at the edge of the spectrograph’s detection limit, making it difficult at that time to be completely convinced of the signal’s authenticity. He further stated that HD 20794 d’s proximity to Earth makes it a prime candidate for future missions aiming to capture direct images of exoplanets.

Despite its placement in the habitable zone, the planet’s elliptical orbit raises questions about its suitability for life. Its changing distance from the star moves it between the inner and outer edges of the habitable zone, potentially subjecting it to extreme temperature variations.

Potential for Further Study

HD 20794 d is expected to be a focal point for upcoming projects like the Extremely Large Telescope, the Habitable Worlds Observatory, and the Large Interferometer For Exoplanets (LIFE). These instruments aim to study exoplanet atmospheres in search of biosignatures that could indicate life.

Continue Reading

Science

El Capitan Is Now the Fastest Supercomputer on the Planet

Published

on

By

El Capitan Is Now the Fastest Supercomputer on the Planet

The world’s most powerful supercomputer, El Capitan, has been officially launched at the Lawrence Livermore National Laboratory (LLNL) in California. Built at a cost of $600 million, the system has been designed to manage highly classified national security tasks. The primary objective of the supercomputer is to ensure the security and reliability of the U.S. nuclear stockpile in the absence of underground testing, which has been prohibited since 1992. Research in high-energy-density physics, material discovery, nuclear data analysis, and weapons design will be conducted, along with other classified operations.

Performance and Capabilities

According to reports, El Capitan became the fastest supercomputer globally after achieving 1.742 exaFLOPS in the High-Performance Linpack (HPL) benchmark. The system has a peak performance of 2.746 exaFLOPS, making it the third machine ever to reach exascale computing speeds. The measurement, taken in floating-point operations per second (FLOPS), represents the ability of the supercomputer to perform one quintillion (10^18) calculations per second.

As reported by space.com, the second-fastest supercomputer, Frontier, located at Oak Ridge National Laboratory in Illinois, has recorded a standard performance of 1.353 exaFLOPS, with a peak of 2.056 exaFLOPS. El Capitan’s significant advancement marks a leap in computational capabilities within high-performance computing.

Technical Specifications

As reported by The Next Platform, El Capitan is powered by over 11 million processing and graphics cores distributed across 44,544 AMD MI300A accelerated processing units. These units incorporate AMD EPYC Genoa CPUs, AMD CDNA3 GPUs, and shared computing memory. Each processing unit includes 128 gigabytes of high-bandwidth memory, designed to optimise computational efficiency while minimising power consumption.

Development and Commissioning

Reports indicate that construction of El Capitan began in May 2023, with the system going online in November 2024. The official dedication took place on January 9, 2025. The supercomputer was commissioned by the U.S. Department of Energy’s CORAL-2 program as a successor to the Sierra supercomputer, which was deployed in 2018 and currently ranks 14th in the latest Top500 list of most powerful supercomputers.

With El Capitan’s full-scale deployment, advancements in national security research and computational science are expected to reach unprecedented levels.

Continue Reading

Science

ISRO Dismisses Glitch Reports in SpaDeX Docking, Confirms Mission Progress

Published

on

By

ISRO Dismisses Glitch Reports in SpaDeX Docking, Confirms Mission Progress

The Indian Space Research Organisation (ISRO) has dismissed reports suggesting issues in its maiden space docking mission, SpaDeX. On February 8, ISRO Chairman and Secretary, Department of Space, V Narayanan, clarified that no technical faults had been encountered in the docking process. He stated that the mission was progressing systematically and that further experiments were planned. His remarks were made during the 15th Biennial Edition of the Aero India International Seminar in Bengaluru, scheduled from February 10 to 14. The docking of satellites under SpaDeX was carried out successfully on January 16, with post-docking control enabling the satellites to function as a single entity.

Successful Docking and Mission Details

As reported by The Indian Express, according to ISRO, SpaDeX achieved a significant milestone by docking two satellites in orbit, with docking precision confirmed through manoeuvres. The agency reported that post-docking stability was achieved, with the satellites operating as a unified structure. The mission also involved injecting the NVS-02 navigation satellite into a Geosynchronous Transfer Orbit (GTO).

ISRO detailed the docking procedure, stating in a post on X (formerly Twitter) that the satellites were manoeuvred from a 15-metre distance to a 3-metre hold point before initiating capture. The docking process was completed with retraction and rigidisation for structural stability. With this development, India became the fourth country globally to achieve space docking.

Challenges in Orbit Raising Operations

Despite the successful docking, ISRO issued an update on February 2 indicating that attempts to raise the satellite’s orbit had encountered difficulties. The agency explained that the oxidiser valves, crucial for thruster ignition, had failed to open, preventing orbital repositioning. The issue remains under analysis as ISRO assesses possible solutions.

The SpaDeX mission was launched on December 30, 2024, using the PSLV C60 rocket, which deployed two small satellites, SDX01 and SDX02, into a 475-kilometre orbit. The mission serves as a demonstration of in-space docking capabilities, aiming to advance cost-effective space technology for future applications.

Continue Reading

Trending