Connect with us

Published

on

A significant breakthrough in paleontology has been made with the digital reconstruction of a dwarf hippopotamus skull that once inhabited Crete during the Pleistocene epoch, according to reports. Researchers employed advanced 3D imaging and photogrammetry to restore the fragmented remains of Hippopotamus creutzburgi, providing a complete visual representation for the first time. This discovery sheds light on the anatomy, evolution, and survival adaptations of a species that evolved distinctly on the isolated island environment before its eventual extinction.

Innovative Digital Reconstruction

According to research published in Digital Applications in Archaeology and Cultural Heritage, the project led by Nikolaos Gerakakis and Professor Dimitrios Makris utilised four fossil fragments, unearthed between 1998 and 2002, to reconstruct the skull. The flattened cranium and mandible posed challenges due to their extensive deformation, as per reports. A “spider-like” exoskeleton with 23 armatures was used in Blender software to ensure precise retrodeformation. Gerakakis explained to Phys.org that the method preserved the integrity of the fossils while creating an anatomically accurate digital model.

Insights into Island Adaptations

The species is believed to have descended from Hippopotamus antiquus, which likely migrated from the Peloponnese to Crete during lower sea levels, as reported. Juvenile members of the herd might have had higher survival rates during the journey, forming the initial population on the island. Over generations, the hippos adapted to their environment, decreasing in size, a phenomenon consistent with the “island rule” proposed by biologist Van Valen.

Future Applications and Research

Reportedly, the reconstructed skull has been used to model a full skeleton of the species, with plans for its physical display at the Katharó Plateau. Ongoing studies aim to determine the causes of H. creutzburgi’s extinction, which could include environmental shifts, food scarcity, or competition with deer species that arrived on the island later. These reconstructions contribute to a deeper understanding of prehistoric life and evolutionary dynamics.

Continue Reading

Science

AI Model Learns to Predict Human Gait for Smarter, Pre-Trained Exoskeleton Control

Published

on

By

Scientists at Georgia Tech have created an AI technique that pre-trains exoskeleton controllers using existing human motion datasets, removing the need for lengthy lab-based retraining. The system predicts joint behavior and assistance needs, enabling controllers that work as well as hand-tuned versions. This advance accelerates prototype development and could improve…

Continue Reading

Science

Scientists Build One of the Most Detailed Digital Simulations of the Mouse Cortex Using Japan’s Fugaku Supercomputer

Published

on

By

Researchers from the Allen Institute and Japan’s University of Electro-Communications have built one of the most detailed mouse cortex simulations ever created. Using Japan’s Fugaku supercomputer, the team modeled around 10 million neurons and 26 billion synapses, recreating realistic structure and activity. The virtual cortex offers a new platform for studying br…

Continue Reading

Science

UC San Diego Engineers Create Wearable Patch That Controls Robots Even in Chaotic Motion

Published

on

By

UC San Diego engineers have developed a soft, AI-enabled wearable patch that can interpret gestures with high accuracy even during vigorous or chaotic movement. The armband uses stretchable sensors, a custom deep-learning model, and on-chip processing to clean motion signals in real time. This breakthrough could enable intuitive robot control for rehabilitation, indus…

Continue Reading

Trending