Connect with us

Published

on

Fast radio bursts (FRBs), known for their brief but powerful emissions of radio waves, have been traced to extremely compact cosmic objects, including neutron stars and potentially black holes. These bursts, lasting only a millisecond, carry immense energy, rivaling the brightness of entire galaxies. Their origins have long puzzled astronomers, with discoveries ranging from our galaxy to distances of 8 billion light-years. A recent breakthrough has narrowed down the source of at least one FRB to a highly magnetic region surrounding a neutron star.

Study Pinpoints FRB 20221022A’s Origins

According to a study published in Nature, the team from the Massachusetts Institute of Technology (MIT) examined FRB 20221022A, a burst detected from a galaxy 200 million light-years away. By analysing its scintillation — a phenomenon causing light to appear to twinkle — the researchers identified the origin as being within 10,000 kilometres of a neutron star, an area known as the magnetosphere. This marks the first conclusive evidence of FRBs emerging from such a region.

Insights from Scintillation Analysis

As reported by Phys.org, the study revealed that the burst exhibited steep variations in brightness, indicative of scintillation caused by gas within its host galaxy. This gas served as a lens, allowing researchers to determine the burst’s proximity to its source. Lead author Dr. Kenzie Nimmo from MIT told the publication the significance of locating the origin within hundreds of thousands of kilometres from the source, contrasting it with theories suggesting farther shockwave origins.

Polarisation Patterns Suggest Rotation

Collaborators from McGill University found the burst’s light to be highly polarised, forming an S-shaped curve—a feature characteristic of rotating neutron stars, also known as pulsars. This finding further supports the conclusion that FRBs originate from highly magnetised environments.

Potential for Future Research

The study, involving experts like Dr. Kiyoshi Masui and others, highlights the potential of scintillation as a tool for pinpointing FRB origins. These findings pave the way for understanding the diverse physics behind these enigmatic bursts, which are detected daily by advanced telescopes like CHIME.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Shenzhou-15 Spacecraft Debris Burns Over Los Angeles During Uncontrolled Reentry



American Burying Beetle Experiences Population Rise in Nebraska’s Loess Canyons

Related Stories

Continue Reading

Science

Battery Breakthrough Could Make Solar Panels Cheaper and More Powerful

Published

on

By

Researchers in China have set a new 27.2 percent efficiency record for perovskite solar cells by fixing chlorine-ion clumping, a major barrier to performance. Their simple potassium-based method creates a uniform film and boosts long-term stability, marking a major step toward commercial adoption and more reliable low-cost solar energy.

Continue Reading

Science

Interstellar Comet 3I/ATLAS Photographed Beside Distant Galaxy in Rare Cosmic Shot

Published

on

By

A new image of interstellar comet 3I/ATLAS captures its glowing tails and a distant barred spiral galaxy, creating a dramatic cosmic overlap. Astronomers say the comet’s unusual features remain natural despite online speculation. With its closest Earth approach in December, researchers are preparing for sharper spacecraft images expected to reveal even more detail.

Continue Reading

Science

ESA’s Euclid Telescope Charts Over a Million Galaxies in Landmark First Data

Published

on

By

ESA’s Euclid space telescope has captured about 1.2 million galaxies in its first year, providing one of the most detailed wide-field surveys of the universe ever made. Covering distances up to 10 billion light-years, Euclid’s clear, expansive imaging is helping astronomers study galaxy shapes, mergers, dwarf galaxy populations, and the role of supermassive black …

Continue Reading

Trending