Connect with us

Published

on

The mechanics of hula hooping have been analysed by researchers, uncovering how body shapes and motions influence the ability to keep a hoop spinning against gravity. Insights from the study have raised intriguing questions about body dynamics, energy efficiency, and potential engineering applications. The findings, based on experiments and mathematical modelling, offer new perspectives on an activity often overlooked in scientific research. Key revelations include the role of body curvature and slope in maintaining the hoop’s motion.

Study Details Dynamics of Hula Hooping

According to research published in the Proceedings of the National Academy of Sciences, experiments were conducted using miniature robotic models at New York University’s Applied Mathematics Laboratory. Different shapes, such as cylinders, cones, and hourglasses, were replicated at one-tenth human scale to examine their impact on hula hooping efficiency. Motorised motions were applied to these models, and high-speed cameras captured the behaviour of hoops launched onto the robotic forms.

Findings indicated that successful twirling could be achieved without significant variation based on body cross-section shapes, such as circles or ellipses. However, maintaining the hoop’s height against gravity required specific physical attributes, particularly sloping hips and a curvy waist. These characteristics provided the necessary angles for upward thrust and stability, helping to keep the hoop in motion.

Mathematical Modelling and Broader Applications

Senior researcher and associate professor Leif Ristroph explained in a press release that mathematical models were developed to explain the physical principles observed. These models offered insight into the interaction between body motion and hoop dynamics, which could be extended to applications such as energy harvesting and robotics.

The researchers highlighted that the work bridges a gap in the understanding of a popular activity, while also demonstrating its relevance to technology. Ristroph noted that these findings could lead to improvements in robotic systems used in manufacturing, as well as innovative ways to utilise energy generated by vibrations.

This research sheds light on the science behind hula hooping, offering practical applications while enhancing the understanding of human and mechanical motion.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Life on Mars? Studies Suggest Bacteria-Like Organisms Could Exist

Published

on

By

Life on Mars? Studies Suggest Bacteria-Like Organisms Could Exist

The search for extraterrestrial life continues, with Mars remaining a primary focus due to its geological features and past evidence of water. While no living organisms have been found, compounds and minerals suggest conditions that may have once supported microbial life. Scientists are also investigating other locations, including the icy moons of Jupiter and Saturn, which are believed to contain vast subsurface oceans. The study of extremophiles—organisms thriving in extreme environments on Earth—has further expanded possibilities for where life could exist beyond our planet.

Exploring Mars and Beyond

As reported, according to research on Mars’ surface, data from NASA’s Perseverance and Curiosity rovers indicate that the planet’s past climate may have been suitable for microbial life. Despite its current barren landscape, interest remains high due to the discovery of organic molecules. Beyond Mars, celestial bodies such as Europa and Enceladus are being closely studied. These moons contain subsurface oceans beneath thick ice layers, where conditions may allow for microbial survival. Over 5,500 exoplanets have also been identified, with a select few considered potentially habitable.

Life in Extreme Environments

The possibility of life in extreme conditions gained momentum after the discovery of thermophilic bacteria in Yellowstone National Park’s hot springs. Microorganisms have since been found in highly acidic rivers, deep-sea trenches, and even within human bodies. These findings have reshaped theories about the limits of life and influenced the study of extraterrestrial habitability.

Microbial Life in the Human Stomach

Research conducted by Australian doctors Barry Marshall and Robin Warren in the 1980s led to the identification of Helicobacter pylori, a bacterium thriving in the highly acidic environment of the human stomach. Their findings, which earned them the 2005 Nobel Prize in Physiology or Medicine, demonstrated that life can persist in conditions once thought uninhabitable. The study of such microbes continues to inform the search for life in extreme environments beyond Earth.

Continue Reading

Science

SpaceX Falcon 9 Successfully Deploys NASA’s SPHEREx Telescope and PUNCH Probes

Published

on

By

SpaceX Falcon 9 Successfully Deploys NASA’s SPHEREx Telescope and PUNCH Probes

A SpaceX Falcon 9 rocket lifted off from Vandenberg Space Force Base, California, at 11:10 p.m. EST, carrying NASA’s SPHEREx space telescope and the PUNCH solar mission. The dual payload mission successfully reached orbit, marking a major milestone for NASA’s ongoing space exploration efforts. Engineers and scientists involved in the missions expressed excitement as the spacecraft began their journey to designated orbits. The launch had faced multiple delays due to unforeseen setbacks, including the impact of wildfires in California, affecting several mission members.

SPHEREx: Mapping the Universe in Infrared

According to NASA’s Jet Propulsion Laboratory, the Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) is designed to survey the sky in infrared light, allowing scientists to study over 450 million galaxies and 100 million stars in the Milky Way. The 8.5-foot-tall telescope will map the sky in 102 infrared wavelengths, a first in astronomical research. Unlike the James Webb Space Telescope (JWST), which captures detailed images of specific cosmic regions, SPHEREx will create a wide-field map of the entire sky over six months.

NASA’s Nicky Fox, Associate Administrator for the Science Mission Directorate, described the mission as “mapping the entire celestial sky in 102 infrared colors for the first time in humanity’s history” during a briefing on January 31. The telescope has been placed in a sun-synchronous polar orbit to avoid interference from Earth’s infrared glow and maintain optimal observational conditions.

PUNCH: Investigating the Solar Wind

Reportedly, as per NASA’s Southwest Research Institute, the Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission consists of four small satellites designed to study the sun’s outer atmosphere and how it transitions into the solar wind. These observations will help scientists understand the solar wind’s impact on Earth, particularly in predicting space weather events that can affect satellite operations, power grids, and GPS systems.

Craig DeForest, Principal Investigator of the PUNCH mission, stated on February 4 that “one instrument looks close to the sun, where it’s bright, and another looks farther away where it’s fainter,” ensuring detailed observations of solar activity. The mission includes a narrow-field imager that will simulate a continuous solar eclipse, offering an unprecedented view of the sun’s corona.

Next Steps for the Missions

Both SPHEREx and PUNCH will now enter their designated orbits and undergo initial system checks. SPHEREx is expected to begin its all-sky mapping within six months, while PUNCH will commence its solar observations following a 90-day commissioning phase. Each mission is planned to last for at least two years, contributing valuable data to the study of the universe and the sun’s influence on space weather.

Continue Reading

Science

Water May Have Formed in the Universe 100 Million Years After Big Bang

Published

on

By

Water May Have Formed in the Universe 100 Million Years After Big Bang

Water molecules may have emerged in the universe much earlier than previously estimated, suggesting that the conditions necessary for life existed billions of years before scientists expected. New findings indicate that water could have formed as early as 100 to 200 million years after the Big Bang, challenging previous theories on the timeline of planetary and biological evolution. If confirmed, this discovery could significantly reshape the understanding of when and where life could have originated in the cosmos.

Study Suggests Water Existed Soon After the Big Bang

According to a study published in Nature Astronomy, early supernovas played a critical role in the creation of water. The universe initially consisted of basic elements such as hydrogen, helium, and lithium. Oxygen, a necessary component for water, was produced in the first-generation stars, which later exploded in supernova events. The study examined Population III supernovas, the earliest known stellar explosions, to determine how and when water first appeared in space.

Supernova Explosions May Have Contributed to Water Formation

As reported, the research team, led by Daniel Whalen, an astrophysicist at the University of Portsmouth, analysed models of two types of supernovas: core-collapse supernovas and pair-instability supernovas. Both types generated dense gas clouds where water molecules may have formed. In a statement to Live Science, Whalen explained that oxygen, created within these supernovae, combined with hydrogen to produce water, laying the foundation for essential elements needed for life.

Potential Impact on Understanding of Early Galaxies

The study suggests that even though the amount of water in these gas clouds was limited, it was concentrated in areas where stars and planets were likely to form. This implies that galaxies emerging from these regions may have contained water from their inception. If confirmed through further observations, including those from the James Webb Space Telescope, these findings could alter the existing understanding of when the conditions for life first became possible in the universe.

Continue Reading

Trending