Connect with us

Published

on

The mechanics of hula hooping have been analysed by researchers, uncovering how body shapes and motions influence the ability to keep a hoop spinning against gravity. Insights from the study have raised intriguing questions about body dynamics, energy efficiency, and potential engineering applications. The findings, based on experiments and mathematical modelling, offer new perspectives on an activity often overlooked in scientific research. Key revelations include the role of body curvature and slope in maintaining the hoop’s motion.

Study Details Dynamics of Hula Hooping

According to research published in the Proceedings of the National Academy of Sciences, experiments were conducted using miniature robotic models at New York University’s Applied Mathematics Laboratory. Different shapes, such as cylinders, cones, and hourglasses, were replicated at one-tenth human scale to examine their impact on hula hooping efficiency. Motorised motions were applied to these models, and high-speed cameras captured the behaviour of hoops launched onto the robotic forms.

Findings indicated that successful twirling could be achieved without significant variation based on body cross-section shapes, such as circles or ellipses. However, maintaining the hoop’s height against gravity required specific physical attributes, particularly sloping hips and a curvy waist. These characteristics provided the necessary angles for upward thrust and stability, helping to keep the hoop in motion.

Mathematical Modelling and Broader Applications

Senior researcher and associate professor Leif Ristroph explained in a press release that mathematical models were developed to explain the physical principles observed. These models offered insight into the interaction between body motion and hoop dynamics, which could be extended to applications such as energy harvesting and robotics.

The researchers highlighted that the work bridges a gap in the understanding of a popular activity, while also demonstrating its relevance to technology. Ristroph noted that these findings could lead to improvements in robotic systems used in manufacturing, as well as innovative ways to utilise energy generated by vibrations.

This research sheds light on the science behind hula hooping, offering practical applications while enhancing the understanding of human and mechanical motion.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Scientists Identify Oxygen Trapping Weakens Sodium-Ion Battery Performance

Published

on

By

Researchers have identified oxygen trapping in high-sodium cathodes as the main cause of voltage decay. Using EPR spectroscopy, the team uncovered structural changes and trapped O2 accumulation, providing guidance for designing more stable sodium-ion batteries for electric vehicles and energy storage.

Continue Reading

Science

Scientists Develop Two-Level Strategy to Power Next-Gen Lithium–Sulphur Batteries

Published

on

By

Researchers at Chung-Ang University have developed a dual-level engineering strategy combining porous carbon nanofibers and cobalt single-atom catalysts. The design enhances redox reactions, reduces material loss, and improves the lifespan of lithium–sulfur batteries, offering major benefits for electric vehicles and renewable energy systems.

Continue Reading

Science

Dark Matter and Dark Energy Might Not Exist After All, New Study Suggests

Published

on

By

A new theory suggests dark matter and dark energy may not exist. Physicist Rajendra Gupta’s model proposes that the universe’s forces weaken over time, naturally explaining cosmic expansion and galactic motion without unseen matter or energy.

Continue Reading

Trending