Connect with us

Published

on

A breakthrough experiment has showcased the ability of chloroplasts, essential for photosynthesis in plants, to function inside animal cells. Red algal chloroplasts were introduced into cells derived from Chinese hamster ovaries (Cricetulus griseus), where they remained active for 48 hours, converting light into energy. This achievement represents a step forward in efforts to recreate the symbiotic processes seen in nature, offering potential applications in scientific engineering. The project aims to harness photosynthesis in non-plant organisms for diverse purposes.

Chloroplast Integration into Animal Cells

According to the study published in Proceedings of the Japan Academy, Series B, the research was led by Sachihiro Matsunaga, a biologist at the University of Tokyo. His team selected resilient chloroplasts from red algae capable of thriving in extreme conditions, such as volcanic hot springs. These organelles were isolated using a centrifuge and a controlled process that avoided direct damage to animal cells. Instead of piercing cell membranes, the technique involved modifying the culture medium to prompt animal cells to engulf the chloroplasts naturally.

Functionality and Challenges

A Scientific American report confirm that the transplanted chloroplasts demonstrated electron transport—a vital component of photosynthesis—for two days before disintegrating. Past attempts had only succeeded in maintaining chloroplast function for a few hours. However, challenges persist, as chloroplasts require proteins that animal cells cannot naturally produce. Werner Kühlbrandt, a structural biologist at the Max Planck Institute of Biophysics, highlighted the absence of genes needed for protein synthesis and transport, which accelerates chloroplast degradation.

Future Applications

Plans to incorporate photosynthesis-maintaining genes into animal cells are underway, as stated by Matsunaga. This research aims to create photosynthesizing materials for applications such as carbon dioxide capture or oxygen-rich organoid growth. Experts like Jef D. Boeke, a cell biologist at NYU Grossman School of Medicine, believe these advancements may pave the way for innovative uses in biotechnology. Solar-powered humans, however, remain speculative, requiring vastly more surface area than human bodies can provide.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Blue Origin Launches First Wheelchair User to Space and Back

Published

on

By

Blue Origin has made history by launching the first wheelchair user to space and safely returning her to Earth. Aerospace engineer Michi Benthaus flew aboard the company’s New Shepard rocket on a brief suborbital mission. The successful flight highlights expanding access to space as commercial missions increasingly include diverse passengers.

Continue Reading

Science

Planet-Eating Stars Offer a Glimpse Into Earth’s Fate as the Sun Nears Its Final Stages

Published

on

By

Astronomers studying aging Sun-like stars have found strong evidence that stars consume their closest planets as they evolve. Using data from NASA’s TESS mission, researchers observed fewer planets around older stars, suggesting worlds are destroyed over time. The findings offer a realistic preview of Earth’s fate billions of years from now.

Continue Reading

Science

New Ionic Liquid Breaks Stability Barrier for Perovskite Solar Cells

Published

on

By

A new ionic liquid additive developed by researchers at Purdue and Emory universities could transform perovskite solar technology. The compound stabilises crystal growth and buried interfaces, dramatically slowing heat- and light-driven degradation. Solar cells treated with the additive retained about 90% of their efficiency after 1,500 hours at 90°C, outperforming p…

Continue Reading

Trending