Connect with us

Published

on

Efforts to unravel the mysteries of dark matter have gained momentum with a new approach exploring its potential conversion into detectable signals within Earth’s ionosphere. Dark matter, believed to constitute most of the universe’s mass, has remained undetectable despite extensive searches. Recent research proposes that particles like axions or dark photons could convert into low-frequency radio waves in the ionosphere, offering a novel and cost-effective method to detect dark matter through ground-based experiments.

Predicted Mechanism and Experimental Feasibility

According to the study published in Physical Review Letters, this method builds on the resonant conversion principle. Carl Beadle, a researcher at the University of Geneva and lead author of the study, explained to phys.org, that such conversions have been previously considered in astrophysical environments, including neutron stars and planetary systems. Beadle and his colleagues focused on the ionosphere, a well-studied plasma layer surrounding Earth, for its potential to generate signals under specific conditions.

In these models, the mass of dark matter particles aligns with the plasma frequency—a characteristic tied to electron density in the ionosphere. This resonance could produce detectable photons, allowing researchers to test the theory using small dipole antennas. The team’s calculations accounted for signal attenuation factors, demonstrating the viability of detecting dark matter axions or dark photons.

Collaborative Efforts to Validate Findings

Plans for experimental validation are underway. Beadle emphasized the cost-effective nature of the proposed method and its ability to explore previously unexamined parameters of dark matter. The research group is working with experimental physicists to analyze existing data and construct suitable detection systems.

The study offers a new direction in dark matter exploration, leveraging the Earth’s natural plasma environment. By using accessible technology, the approach could provide critical insights into dark matter’s elusive properties, potentially reshaping future searches.

Continue Reading

Science

Battery Breakthrough Could Make Solar Panels Cheaper and More Powerful

Published

on

By

Researchers in China have set a new 27.2 percent efficiency record for perovskite solar cells by fixing chlorine-ion clumping, a major barrier to performance. Their simple potassium-based method creates a uniform film and boosts long-term stability, marking a major step toward commercial adoption and more reliable low-cost solar energy.

Continue Reading

Science

Interstellar Comet 3I/ATLAS Photographed Beside Distant Galaxy in Rare Cosmic Shot

Published

on

By

A new image of interstellar comet 3I/ATLAS captures its glowing tails and a distant barred spiral galaxy, creating a dramatic cosmic overlap. Astronomers say the comet’s unusual features remain natural despite online speculation. With its closest Earth approach in December, researchers are preparing for sharper spacecraft images expected to reveal even more detail.

Continue Reading

Science

ESA’s Euclid Telescope Charts Over a Million Galaxies in Landmark First Data

Published

on

By

ESA’s Euclid space telescope has captured about 1.2 million galaxies in its first year, providing one of the most detailed wide-field surveys of the universe ever made. Covering distances up to 10 billion light-years, Euclid’s clear, expansive imaging is helping astronomers study galaxy shapes, mergers, dwarf galaxy populations, and the role of supermassive black …

Continue Reading

Trending