Connect with us

Published

on

Efforts to unravel the mysteries of dark matter have gained momentum with a new approach exploring its potential conversion into detectable signals within Earth’s ionosphere. Dark matter, believed to constitute most of the universe’s mass, has remained undetectable despite extensive searches. Recent research proposes that particles like axions or dark photons could convert into low-frequency radio waves in the ionosphere, offering a novel and cost-effective method to detect dark matter through ground-based experiments.

Predicted Mechanism and Experimental Feasibility

According to the study published in Physical Review Letters, this method builds on the resonant conversion principle. Carl Beadle, a researcher at the University of Geneva and lead author of the study, explained to phys.org, that such conversions have been previously considered in astrophysical environments, including neutron stars and planetary systems. Beadle and his colleagues focused on the ionosphere, a well-studied plasma layer surrounding Earth, for its potential to generate signals under specific conditions.

In these models, the mass of dark matter particles aligns with the plasma frequency—a characteristic tied to electron density in the ionosphere. This resonance could produce detectable photons, allowing researchers to test the theory using small dipole antennas. The team’s calculations accounted for signal attenuation factors, demonstrating the viability of detecting dark matter axions or dark photons.

Collaborative Efforts to Validate Findings

Plans for experimental validation are underway. Beadle emphasized the cost-effective nature of the proposed method and its ability to explore previously unexamined parameters of dark matter. The research group is working with experimental physicists to analyze existing data and construct suitable detection systems.

The study offers a new direction in dark matter exploration, leveraging the Earth’s natural plasma environment. By using accessible technology, the approach could provide critical insights into dark matter’s elusive properties, potentially reshaping future searches.

Continue Reading

Science

Electricity-Driven Nitrogen Insertion Opens a Sustainable Path to Drug-Ready Heterocycles

Published

on

By

Scientists at the National University of Singapore have developed an electricity-driven method to insert nitrogen into stable carbon rings, enabling greener synthesis of valuable heterocycles. Published in Nature Synthesis, the approach avoids harsh chemicals, reduces waste, and allows access to key drug-ready molecular frameworks under mild conditions.

Continue Reading

Science

Hubble Captures Rare Collision in Nearby Planetary System, Revealing Violent Planet Formation

Published

on

By

Astronomers using NASA’s Hubble Space Telescope have witnessed rare collisions between rocky bodies in the Fomalhaut system. The glowing debris clouds created by these impacts offer a unique glimpse into how planets form and highlight challenges in identifying true exoplanets.

Continue Reading

Science

Astronomers Observe Black Hole Twisting Spacetime for the First Time, Confirming Einstein’s Theory

Published

on

By

Astronomers have directly observed a black hole twisting spacetime for the first time, confirming Einstein’s long-standing prediction. The effect was detected during a violent stellar destruction event, where repeating X-ray and radio signals revealed a slow cosmic wobble. The discovery provides new insight into black hole spin, jets, and extreme gravity.

Continue Reading

Trending