Connect with us

Published

on

A massive planetary object, believed to be eight times the size of Jupiter, is thought to have passed close to the solar system billions of years ago, potentially altering the orbits of its outer planets. This flyby may explain why the trajectories of Jupiter, Saturn, Uranus, and Neptune deviate slightly from perfectly circular orbits, as well as why they do not lie precisely on the same plane. Astronomers have been examining this mystery for decades, seeking answers to these orbital peculiarities.

Evidence From Computer Simulations

According to a study published in the arXiv preprint database, researchers led by planetary scientist Renu Malhotra from the University of Arizona conducted 50,000 computer simulations to test the hypothesis. As reported by Live Science, these simulations explored interactions between the four gas giants and a planetary or substellar object with varying sizes and trajectories. The study incorporated flybys involving objects ranging from twice the mass of Jupiter to 50 times its mass.

The team reported that in about 1% of the simulations, a close approach from such an object could recreate the present orbital arrangements of the outer planets. The scenarios that aligned most closely with observed planetary paths involved the interloper coming as close as 1.69 astronomical units (AU) from the sun, a distance comparable to the orbit of Mars.

Potential Implications and Frequency

The research suggested that the visiting object may have been a brown dwarf or a planetary mass body. These findings imply that flybys of substellar objects, which are abundant in the cosmos, may occur more frequently than previously thought. This hypothesis challenges earlier explanations attributing the changes solely to interactions among the planets.

Further investigations into the influence of such interstellar visitors could provide more insights into the formation and evolution of our solar system. While the study remains under review, it opens new avenues for exploring the forces that shaped the solar system’s architecture billions of years ago

Continue Reading

Science

Astronomers Watch a Dormant Neutron Star Reignite After a Decade of Silence

Published

on

By

Astronomers observed a neutron star known as P13 suddenly brighten after years of inactivity. The decade-long study shows how changes in accretion can drive extreme X-ray power, offering new insight into ultraluminous X-ray sources and neutron star physics.

Continue Reading

Science

Webb Telescope Discovers Hidden Atmosphere on Molten Super-Earth TOI-561 b Despite Extreme Heat

Published

on

By

NASA’s Webb Telescope detects a hidden atmosphere on ultra-hot super-Earth TOI-561 b, revealing gases above its molten surface, challenging previous assumptions about small planets surviving intense stellar radiation.

Continue Reading

Science

Predictive Forecasting Tools Can Boost the Success of Clean Energy Investments Worldwide

Published

on

By

Data-driven forecasting can help governments and companies make better clean energy investment decisions. Involving stakeholders and validating models improves reliability and increases success in climate, economic, and societal outcomes.

Continue Reading

Trending