Connect with us

Published

on

ELIZA, a chatbot developed in the 1960s and recognised as the world’s first, has been revived using long-lost computer code found in archival records. Originally created by MIT professor Joseph Weizenbaum, ELIZA was designed as a conversational program capable of mimicking a psychotherapist’s interactions. The project, conducted by researchers and archivists, marks a milestone in understanding early artificial intelligence and its impact on modern technology. Despite its simplicity compared to today’s AI, ELIZA’s ability to hold a conversation remains impressive.

Reconstruction of the Code

According to a paper posted on the preprint server arXiv, the chatbot’s code was uncovered in 2021 by Jeff Shrager, a cognitive scientist at Stanford University, and Myles Crowley, an MIT archivist. Written in a now-obsolete programming language called MAD-SLIP, the original 420-line code had not been operational for six decades. The research team spent years debugging and creating a computer emulator capable of running the software. ELIZA’s functionality was successfully restored on December 21, 2024.

Preserving Historical Authenticity

As reported by Live Science, researchers encountered a bug in the code but decided against fixing it, citing the need to preserve its historical integrity. Shrager explained to Live Science that altering the program would compromise its authenticity, likening it to modifying an iconic artwork. This decision highlights the importance placed on maintaining the original program’s features, even at the cost of usability.

Impact and Legacy

Experts emphasised ELIZA’s significance in shaping the development of artificial intelligence. David Berry, a digital humanities professor at the University of Sussex, stated that while modern language models surpass ELIZA in capability, its conversational design remains noteworthy. The chatbot was programmed to listen and prompt users, a feature seen as more conversationally authentic than many current AI systems.

The revival of ELIZA draws attention to the need for preserving the history of computer science, as its legacy is considered a cultural artifact reflecting the early days of computational innovation.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Small Carnivores Were Crucial for Early Levant Diets, Claims New Study



New Study Uncovers Discrepancies in Universe’s Expansion Rate, Challenges Cosmology Models

Continue Reading

Science

NASA Rockets Set to Journey Through Flickering, Disappearing Auroras

Published

on

By

NASA Rockets Set to Journey Through Flickering, Disappearing Auroras

Two NASA rocket missions are set to explore the mysteries of auroras, aiming to uncover why they flicker, pulsate, or feature dark patches. These rockets, part of NASA’s effort to understand Earth’s space environment, will launch from Poker Flat Research Range in Fairbanks, Alaska, starting January 21, 2025. The findings could contribute to protecting astronauts and spacecraft from the impacts of space weather, as auroras are closely tied to the planet’s magnetosphere and charged particles from space.

GIRAFF Mission to Investigate Pulsating Auroras

According to the Ground Imaging to Rocket Investigation of Auroral Fast Features (GIRAFF) mission, two rockets equipped with identical instruments will target specific aurora subtypes. One rocket will focus on fast-pulsating auroras, flashing a few times per second, while the other will study flickering auroras, which blink up to 15 times per second. As reported by an official press release by NASA, as per Robert Michell, a space physicist at NASA’s Goddard Space Flight Center and principal investigator of the GIRAFF mission, the data collected will analyse energy levels, electron quantities, and arrival times to determine the mechanisms driving these phenomena.

Black Aurora Phenomenon to Be Explored

The Black and Diffuse Aurora Science Surveyor mission, led by Marilia Samara, also of NASA’s Goddard Space Flight Center, will study “black auroras,” where dark patches appear within auroral displays. These areas are suspected to form due to a reversal in electron streams, causing electrons to escape rather than collide with atmospheric particles. According to Samara, distinguishing genuine black auroras requires detecting outgoing electrons, making the rocket’s instruments crucial for the study.

Challenges in Targeting Dynamic Auroras

Timing the launches precisely to intercept moving auroras presents a significant challenge. Ground-based cameras at the launch site and in Venetie, Alaska, will monitor auroral movements to predict their trajectories. Both mission teams rely heavily on experience and intuition to ensure success, highlighting the complexity of studying these fleeting natural light displays.

Continue Reading

Science

Finland is Now the 53rd Member of the Artemis Accords for Lunar Exploration

Published

on

By

Finland is Now the 53rd Member of the Artemis Accords for Lunar Exploration

Finland has officially become the 53rd country to sign the Artemis Accords, joining the international framework aimed at promoting responsible and peaceful space exploration. The agreement was signed on January 21, 2025, during the Winter Satellite Workshop in Espoo, Finland. This milestone underscores the Nordic nation’s commitment to advancing its role in collaborative lunar exploration and space activities, with its government emphasizing the importance of this step for its space sector.

According to the Artemis Accords Framework

The Accords were established in October 2020 to encourage transparency, safety, and international cooperation in space exploration, as reported by space.com. Principles outlined in the 1967 Outer Space Treaty form the foundation of these guidelines. Finnish Minister of Economic Affairs Wille Rydman noted that Finland’s decades-long contributions to space technologies would be strengthened through this collaboration.

As reported by space.com, in a statement, Wille Rydman highlighted the potential opportunities for Finnish companies and research institutions through this partnership, reinforcing ties with the United States and allied nations. NASA Associate Administrator Jim Free remarked that Finland’s commitment aligns with the goals of fostering open scientific data sharing and environmental preservation in space. These comments were made during the signing ceremony and in NASA’s prepared statements for the event.

The inclusion of Finland follows recent signings by Liechtenstein, Thailand, Panama and Austria, further expanding the global coalition for lunar exploration. With its extensive focus on innovation and technology, Finland aims to contribute meaningfully to the Artemis programme, which seeks to establish a sustainable human presence on the Moon.

The Artemis Accords continue to attract nations seeking to advance space exploration in a collaborative and principled manner, with Finland’s membership marking a significant step in the Nordic region’s engagement in the new era of space exploration.

(Except for the headline, this story has not been edited by NDTV staff and is published from a press release)

Continue Reading

Science

How does iron behave at Earth’s core? Cutting-edge research reveals all!

Published

on

By

How does iron behave at Earth's core? Cutting-edge research reveals all!

Iron, a primary component of the Earth’s core, exhibits unique behaviours under extreme temperatures and pressures. Recent research has examined its melting temperature and phase stability under conditions mirroring those at the Earth’s core. Findings from advanced experiments involving ultrafast X-ray absorption spectroscopy have highlighted significant revelations about the structural and thermal properties of iron. These discoveries hold potential to refine the understanding of the Earth’s internal structure and geodynamics, providing valuable data about the processes shaping the planet’s evolution.

Advanced Study of Iron Using X-ray Spectroscopy

According to a study published in Physical Review Letters, researchers from the European Synchrotron Radiation Facility (ESRF) in Grenoble and other institutes globally investigated the microscopic behaviour of iron under high-pressure and high-temperature conditions. The experiments were conducted at the ESRF’s High-Power Laser Facility, combining high-power lasers with ultrafast X-ray absorption spectroscopy to explore the phase diagram of iron.

Sofia Balugani, the lead researcher, noted in a statement to Phys.org that the study aimed to determine iron’s melting curve and structural changes at pressures reaching 240 GPa. These conditions are comparable to those near the Earth’s inner core boundary, offering insights into how the liquid outer core transitions to the solid inner core.

Key Findings and Implications for Geodynamics

Iron’s phase was identified as hexagonal close-packed (hcp) at 240 GPa and 5,345 K, just before melting. This finding, as highlighted by Balugani, contradicts earlier theoretical predictions favouring a body-centred cubic (bcc) structure. The study also provided a new methodology for determining bulk temperatures of metals under extreme conditions using X-ray absorption spectroscopy.

The research has opened pathways for studying iron alloys at even higher pressures and temperatures, potentially enhancing knowledge of Earth’s core dynamics and contributing to nuclear fusion studies. Further exploration of iron alloys is anticipated to shed light on telluric exoplanets and the broader implications of planetary geodynamics.

Continue Reading

Trending