Connect with us

Published

on

Two NASA rocket missions are set to explore the mysteries of auroras, aiming to uncover why they flicker, pulsate, or feature dark patches. These rockets, part of NASA’s effort to understand Earth’s space environment, will launch from Poker Flat Research Range in Fairbanks, Alaska, starting January 21, 2025. The findings could contribute to protecting astronauts and spacecraft from the impacts of space weather, as auroras are closely tied to the planet’s magnetosphere and charged particles from space.

GIRAFF Mission to Investigate Pulsating Auroras

According to the Ground Imaging to Rocket Investigation of Auroral Fast Features (GIRAFF) mission, two rockets equipped with identical instruments will target specific aurora subtypes. One rocket will focus on fast-pulsating auroras, flashing a few times per second, while the other will study flickering auroras, which blink up to 15 times per second. As reported by an official press release by NASA, as per Robert Michell, a space physicist at NASA’s Goddard Space Flight Center and principal investigator of the GIRAFF mission, the data collected will analyse energy levels, electron quantities, and arrival times to determine the mechanisms driving these phenomena.

Black Aurora Phenomenon to Be Explored

The Black and Diffuse Aurora Science Surveyor mission, led by Marilia Samara, also of NASA’s Goddard Space Flight Center, will study “black auroras,” where dark patches appear within auroral displays. These areas are suspected to form due to a reversal in electron streams, causing electrons to escape rather than collide with atmospheric particles. According to Samara, distinguishing genuine black auroras requires detecting outgoing electrons, making the rocket’s instruments crucial for the study.

Challenges in Targeting Dynamic Auroras

Timing the launches precisely to intercept moving auroras presents a significant challenge. Ground-based cameras at the launch site and in Venetie, Alaska, will monitor auroral movements to predict their trajectories. Both mission teams rely heavily on experience and intuition to ensure success, highlighting the complexity of studying these fleeting natural light displays.

Continue Reading

Science

UC San Diego Engineers Create Wearable Patch That Controls Robots Even in Chaotic Motion

Published

on

By

UC San Diego engineers have developed a soft, AI-enabled wearable patch that can interpret gestures with high accuracy even during vigorous or chaotic movement. The armband uses stretchable sensors, a custom deep-learning model, and on-chip processing to clean motion signals in real time. This breakthrough could enable intuitive robot control for rehabilitation, indus…

Continue Reading

Science

Battery Breakthrough Could Make Solar Panels Cheaper and More Powerful

Published

on

By

Researchers in China have set a new 27.2 percent efficiency record for perovskite solar cells by fixing chlorine-ion clumping, a major barrier to performance. Their simple potassium-based method creates a uniform film and boosts long-term stability, marking a major step toward commercial adoption and more reliable low-cost solar energy.

Continue Reading

Science

Interstellar Comet 3I/ATLAS Photographed Beside Distant Galaxy in Rare Cosmic Shot

Published

on

By

A new image of interstellar comet 3I/ATLAS captures its glowing tails and a distant barred spiral galaxy, creating a dramatic cosmic overlap. Astronomers say the comet’s unusual features remain natural despite online speculation. With its closest Earth approach in December, researchers are preparing for sharper spacecraft images expected to reveal even more detail.

Continue Reading

Trending