Connect with us

Published

on

Two NASA rocket missions are set to explore the mysteries of auroras, aiming to uncover why they flicker, pulsate, or feature dark patches. These rockets, part of NASA’s effort to understand Earth’s space environment, will launch from Poker Flat Research Range in Fairbanks, Alaska, starting January 21, 2025. The findings could contribute to protecting astronauts and spacecraft from the impacts of space weather, as auroras are closely tied to the planet’s magnetosphere and charged particles from space.

GIRAFF Mission to Investigate Pulsating Auroras

According to the Ground Imaging to Rocket Investigation of Auroral Fast Features (GIRAFF) mission, two rockets equipped with identical instruments will target specific aurora subtypes. One rocket will focus on fast-pulsating auroras, flashing a few times per second, while the other will study flickering auroras, which blink up to 15 times per second. As reported by an official press release by NASA, as per Robert Michell, a space physicist at NASA’s Goddard Space Flight Center and principal investigator of the GIRAFF mission, the data collected will analyse energy levels, electron quantities, and arrival times to determine the mechanisms driving these phenomena.

Black Aurora Phenomenon to Be Explored

The Black and Diffuse Aurora Science Surveyor mission, led by Marilia Samara, also of NASA’s Goddard Space Flight Center, will study “black auroras,” where dark patches appear within auroral displays. These areas are suspected to form due to a reversal in electron streams, causing electrons to escape rather than collide with atmospheric particles. According to Samara, distinguishing genuine black auroras requires detecting outgoing electrons, making the rocket’s instruments crucial for the study.

Challenges in Targeting Dynamic Auroras

Timing the launches precisely to intercept moving auroras presents a significant challenge. Ground-based cameras at the launch site and in Venetie, Alaska, will monitor auroral movements to predict their trajectories. Both mission teams rely heavily on experience and intuition to ensure success, highlighting the complexity of studying these fleeting natural light displays.

Continue Reading

Science

DNA Cassette Tapes Could Transform the Future of Digital Storage

Published

on

By

Researchers in China have developed a DNA “cassette tape” that stores data at densities far beyond current drives. By encoding digital files into DNA strands embedded on tape, the system allows compact, sustainable archival storage. A 100-meter DNA tape could hold 36 petabytes, reshaping the future of data centers.

Continue Reading

Science

Researchers Create Metal That Resists Cracking in Deep Space Cold

Published

on

By

Researchers have engineered a cobalt-nickel-vanadium alloy that stays tough even at –186°C, resisting the brittleness that plagues most metals in extreme cold. Using atomic-scale design, the team created dual structural patterns inside the alloy that block cracks and preserve ductility. In lab tests, the metal absorbed far more strain than conventional steels.

Continue Reading

Science

Researchers Reconstruct 2,500-Year-Old Faces From Skulls Found in Tamil Nadu

Published

on

By

Researchers reconstructed lifelike faces from 2,500-year-old skulls found at Kondagai, Tamil Nadu. Linked to Keeladi’s Iron Age city, the portraits highlight advanced water systems, early Tamil script, and brick houses. The reconstructions provide a rare human link to South India’s sophisticated ancient urban culture.

Continue Reading

Trending