Connect with us

Published

on

A small near-Earth asteroid, 2024 PT5, has sparked interest among scientists due to its potential lunar origins. Discovered in August 2024, the object remained near Earth for several months before resuming its orbit around the Sun. Measuring approximately 10 meters in width, the asteroid is believed to have been ejected from the Moon thousands of years ago, following a significant impact. Observations have shown that the object does not pose a threat to Earth, but its unusual composition has drawn attention from researchers.

Findings from the Astrophysical Journal Letters

According to a study published in Astrophysical Journal Letters, 2024 PT5’s surface reflects sunlight in a manner consistent with lunar rock rather than typical asteroid material. As per an official press release by NASA, Teddy Kareta, an astronomer at Lowell Observatory and the study’s lead author, stated that the asteroid’s silicate-rich composition aligns closely with Moon samples collected during past missions. Kareta also noted a lack of space weathering on the asteroid, suggesting its presence in space for only a few thousand years.

Analysing Motion and Origin

NASA’s Center for Near Earth Object Studies (CNEOS) ruled out the possibility of 2024 PT5 being human-made space debris by analysing its movement. Oscar Fuentes-Muñoz, a NASA postdoctoral fellow at the Jet Propulsion Laboratory, told media outlets that solar radiation pressure, which significantly affects lightweight debris, did not alter the asteroid’s trajectory in a similar manner. This evidence strongly supports its classification as a dense, natural object rather than artificial debris.

Implications for Lunar and Asteroid Studies

The discovery has doubled the number of known lunar-origin asteroids, joining 469219 Kamo’oalewa, identified in 2016. Researchers are optimistic about identifying more lunar fragments as telescopic technology advances. Linking such objects to specific lunar craters could offer valuable insights into the Moon’s cratering processes and subsurface composition, potentially enhancing future lunar exploration efforts.

Continue Reading

Science

UC San Diego Engineers Create Wearable Patch That Controls Robots Even in Chaotic Motion

Published

on

By

UC San Diego engineers have developed a soft, AI-enabled wearable patch that can interpret gestures with high accuracy even during vigorous or chaotic movement. The armband uses stretchable sensors, a custom deep-learning model, and on-chip processing to clean motion signals in real time. This breakthrough could enable intuitive robot control for rehabilitation, indus…

Continue Reading

Science

Battery Breakthrough Could Make Solar Panels Cheaper and More Powerful

Published

on

By

Researchers in China have set a new 27.2 percent efficiency record for perovskite solar cells by fixing chlorine-ion clumping, a major barrier to performance. Their simple potassium-based method creates a uniform film and boosts long-term stability, marking a major step toward commercial adoption and more reliable low-cost solar energy.

Continue Reading

Science

Interstellar Comet 3I/ATLAS Photographed Beside Distant Galaxy in Rare Cosmic Shot

Published

on

By

A new image of interstellar comet 3I/ATLAS captures its glowing tails and a distant barred spiral galaxy, creating a dramatic cosmic overlap. Astronomers say the comet’s unusual features remain natural despite online speculation. With its closest Earth approach in December, researchers are preparing for sharper spacecraft images expected to reveal even more detail.

Continue Reading

Trending