Connect with us

Published

on

A space rock named 2024 PT5, resembling the size of a school bus, lingered near Earth for almost two months last year. The asteroid, which returned in January and passed safely at a distance of 1.1 million miles, is believed to have originated from the moon. New research suggests it may have been ejected from the lunar surface thousands of years ago due to a significant impact. This insight offers a deeper understanding of near-Earth objects and their potential origins.

Study Findings Reveal Lunar Connection

According to a study published in The Astrophysical Journal Letters, observations using the Lowell Discovery Telescope in Arizona and NASA’s Infrared Telescope Facility in Hawai’i linked 2024 PT5’s surface material to lunar rocks. The asteroid’s spectral properties closely matched samples retrieved during the Apollo 14 mission, indicating its origin in the lunar highlands. Teddy Kareta, an astronomer at Lowell Observatory, highlighted in a statement, posted by the JPL that the presence of silicate minerals, which are uncommon in other asteroids but consistent with lunar material. These findings were confirmed through comparisons with extensive meteorite and terrestrial databases.

Evidence Rules Out Artificial Origins

As reported by space.com, It was determined that 2024 PT5 had a rocky composition with characteristics influenced by solar radiation, ruling out artificial origins such as space debris. Kareta noted the asteroid’s distinct trajectory and makeup, further confirming its natural formation. This is only the second recorded case of an asteroid likely originating from the moon, following the earlier discovery of 469219 Kamo’oalewa.

Implications for Planetary Defense and Future Research

The study suggests a potentially larger population of lunar-origin asteroids awaiting discovery. Researchers propose that 16 near-Earth objects in current catalogs may share similar origins. Enhanced detection capabilities, such as the upcoming Vera C. Rubin Observatory, could improve the identification and monitoring of smaller asteroids. This could provide valuable insights for planetary defense strategies, particularly in assessing impact risks from near-Earth objects of lunar origin.

Continue Reading

Science

Webb Telescope Spots Possible Jellyfish Galaxy 12 Billion Light-Years Away

Published

on

By

Webb Telescope Spots Possible Jellyfish Galaxy 12 Billion Light-Years Away

Astronomers have discovered a new “jellyfish” galaxy about 12 billion light-years away using the James Webb Space Telescope. It appears to have tentacle-like streams of gas and stars trailing off one side, a signature feature of jellyfish galaxies. These galaxies develop such trails via ram pressure stripping as they move through dense cluster environments, triggering star formation in the stripped gas. The find was made by Ian Roberts of Waterloo University, and details are described in a preprint on arXiv. More analysis is needed to confirm the classification, but early signs strongly suggest this object is indeed a jellyfish galaxy.

What Are Jellyfish Galaxies?

According to NASA, jellyfish galaxies are so named because of the long, trailing streams of gas and young stars that extend from one side of the galaxy. This phenomenon occurs when a galaxy moves rapidly through the hot, dense gas in a cluster, and ram pressure strips material away. The stripped gas forms a wake behind the galaxy, and this wake often lights up with bursts of new star formation. At the same time, the process can deprive the galaxy’s core of gas, potentially slowing star formation in the galaxy’s center.

Because the jellyfish stage is short-lived on cosmic timescales, astronomers rarely catch galaxies in this act. Studying jellyfish galaxies gives scientists insight into how dense environments affect galaxy evolution and star formation.

Discovery and Future Research

The researchers caution that the galaxy’s apparent “tentacles” may partly be an artifact of the imaging method. If confirmed, this object (COSMOS2020-635829) would be the most distant known jellyfish galaxy, offering a rare glimpse of how ram pressure stripping and cluster-driven quenching operated in the early cosmos. As the study authors note, finding a jellyfish at z>1 reinforces the idea that these environmental effects were already at work near the peak of cosmic star formation.

Continue Reading

Science

Mars Dust Devils May Spark Lightning, Might Pose Risks to Rovers: Study

Published

on

By

Mars Dust Devils May Spark Lightning, Might Pose Risks to Rovers: Study

Dust devils on Mars – swirling columns of dust and air that often scour the Red Planet’s surface – may be crackling with electricity, a new computer-modeling study suggests. Researchers led by Varun Sheel simulated how Mars’s dry atmosphere and frictional dust collisions charge up grains inside a vortex. They found these fields could grow so strong that brief lightning-like discharges might occur. This electrification is a concern for surface missions, since charged dust could cling to rover wheels, solar panels and antennas, blocking sunlight and interfering with communications.

Formation and Features of Martian Dust Devils

According to the study, dust devils form when the Sun heats Mars’s surface, causing warm air to rise and spin into vortices. Colder air rushes inward along the ground, stretching the rising column upward and whipping dust high into the sky. Because Mars has lower gravity and a thinner atmosphere than Earth, its dust devils can tower much higher, three times larger than storms on Earth. NASA’s Viking mission first detected Martian dust devils; later rovers like Curiosity and Perseverance have filmed them sweeping across the dusty plains. These whirlwinds clean off solar panels – as happened with Spirit in 2005 – but more often they stir up fine dust that can coat instruments.

Electrification and Risks to Rovers

Dust grains in Martian whirlwinds can pick up charge through collisions (a triboelectric effect). Sheel’s models predict that this charge separation can create strong electric fields inside a dust devil. These fields could even exceed Mars’s atmospheric breakdown threshold (around 25 kV/m), enough to spark lightning in the vortex. NASA’s Perseverance rover recorded what appears to be a small triboelectric discharge when a dust devil passed overhead.

Even without lightning, any static buildup is problematic. As planetary scientist Yoav Yair notes, “Electrified dust will adhere to conducting surfaces such as wheels, solar panels and antennas,” potentially reducing sunlight reaching panels and jamming communications. Rovers may need new design features or procedures to handle this unusual Martian weather.

Continue Reading

Science

NASA’s Perseverance Grinds Into ‘Weird’ Martian Rock to Uncover Signs of Ancient Habitability

Published

on

By

NASA's Perseverance Grinds Into ‘Weird’ Martian Rock to Uncover Signs of Ancient Habitability

NASA’s Perseverance rover has begun drilling into a rock on Mars as it tries to collect more information about the Red Planet’s ancient environment. The Rover could help in finding the answers to the most-asked question: Mars was previously habitable. Previously, the rover abraded a spot called “Kenmore”, a rocky outcrop in Jezero Crater. The rover took away the outer layer, which exposed the unadulterated material below. This method, which involves mechanical grinding and puffs of nitrogen gas, allowed scientists to study rock interiors that have been protected from wind, radiation, and dust for billions of years. The mission represents a move from reconnoitering to examining, applying advanced technologies to detect stones of a bygone era, past water, and possibly life.

Perseverance Uncovers Water-Rich Minerals in Stubborn Mars Rock, Aiding Future Exploration Plans

As per a NASA report, the Kenmore rock proved unexpectedly difficult. “It vibrated all over the place, and small chunks broke off,” stated Ken Farley, Perseverance’s deputy project scientist. Despite the challenge, the team managed to expose enough of the surface for analysis. Instruments like WATSON and SuperCam revealed clay minerals—hydrated compounds containing iron and magnesium, suggesting prolonged water exposure. These findings align with Jezero Crater’s history as a river delta and lakebed, making it a prime site for biosignature exploration.

Additional SHERLOC and PIXL measurements verified the presence of feldspar and atomically dispersed manganese – a first for the Martian samples. Why they were important: They grew in water-rich environments, a hint that the red planet had a more watery past. The rover’s instruments will also be used to assess whether such rocks could be exploited in future human missions, extracting fuel or constructing habitats. “The data we’re getting now is what we’ll use to position ourselves so that future missions don’t land on uncooperative rocks,” Farley mentioned.

Kenmore is the 30th rock that Perseverance has examined up close, and the rover continues to drill and seal core samples that might someday be brought back to Earth. Yet the future of Mars Sample Return (MSR) overall is uncertain, with a proposed NASA budget for Fiscal Year (FY) 2026 under the Trump Administration cutting the campaign. All the same, the present mission still is serving up important bits of Mars’s geologic and possibly habitable past.

Continue Reading

Trending