Connect with us

Published

on

A new laser-based imaging technique has been developed to study nanoscale heat and charge transport in ultrawide-bandgap semiconductors like diamond. By utilising a tabletop deep-ultraviolet (DUV) laser, researchers have achieved spatial resolutions of 287 nanometres, enabling detailed analysis of diamond’s transport behaviours. This breakthrough addresses the limitations of visible-light imaging methods and could revolutionise the design of high-efficiency power electronics and communication systems.

Study Reveals Unique Capabilities of the DUV Microscope

According to the study published in Physical Review Applied, the microscope generates high-energy DUV light to create interference patterns on the material’s surface, forming sinusoidal heating profiles. Researchers at JILA, led by Margaret Murnane and Henry Kapteyn, developed this innovative technique in collaboration with graduate students Emma Nelson, Theodore Culman and Brendan McBennett and industry partners from 3M. The study overcomes significant challenges in imaging ultrawide-bandgap materials, which cannot be probed with conventional visible light due to their large energy gaps.

Development and Validation of the DUV System

As reported by phys.org, the team designed the system by converting an 800-nanometre laser pulse into shorter wavelengths through nonlinear crystals. This process created a powerful DUV light source capable of forming nanoscale transient gratings on a material’s surface. The system was tested and refined over several years, including during the COVID-19 pandemic. Nelson emphasised that achieving precise alignment in the system was critical to generating accurate nanoscale patterns.

Breakthroughs in Diamond Analysis

The system was validated using thin gold films, where it successfully measured material properties such as elasticity and density. Once confirmed, the microscope was applied to diamond, allowing researchers to observe charge carrier diffusion and nanoscale heat transport without altering the material. The study revealed complex behaviours like ballistic and hydrodynamic effects, challenging traditional models of heat flow.

Implications for Advanced Electronics

The insights gained could shape the future of electronics by enhancing the understanding of nanoscale transport in ultrawide-bandgap materials. Researchers believe this innovation will advance the development of power electronics, communication systems, and quantum technologies.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Airtel Revises New Voice and SMS-Only Recharge Plans: Check Updated Prices



OpenAI Faces New Copyright Case, From Global Publishers in India

Continue Reading

Science

Astronomers Predict 90 Percent Chance of Spotting an Exploding Black Hole in Next Decade

Published

on

By

Astronomers now predict a 90% chance of detecting an exploding primordial black hole within a decade. Such an event would confirm Stephen Hawking’s theory that black holes evaporate, releasing a flash of radiation and exotic particles. Detecting one would revolutionize physics and rewrite our understanding of the universe.

Continue Reading

Science

DNA Cassette Tapes Could Transform the Future of Digital Storage

Published

on

By

Researchers in China have developed a DNA “cassette tape” that stores data at densities far beyond current drives. By encoding digital files into DNA strands embedded on tape, the system allows compact, sustainable archival storage. A 100-meter DNA tape could hold 36 petabytes, reshaping the future of data centers.

Continue Reading

Science

Researchers Create Metal That Resists Cracking in Deep Space Cold

Published

on

By

Researchers have engineered a cobalt-nickel-vanadium alloy that stays tough even at –186°C, resisting the brittleness that plagues most metals in extreme cold. Using atomic-scale design, the team created dual structural patterns inside the alloy that block cracks and preserve ductility. In lab tests, the metal absorbed far more strain than conventional steels.

Continue Reading

Trending