Connect with us

Published

on

A significant milestone in suborbital spaceflight was achieved by Blue Origin with the launch of its uncrewed NS-29 mission. The New Shepard rocket lifted off from the company’s West Texas facility on February 4 at 11 a.m. EST, following a week-long delay caused by adverse weather conditions and a technical issue in the rocket’s avionics system. The booster and capsule both returned to Earth successfully, though one of the capsule’s three parachutes did not fully deploy. Blue Origin stated during the live broadcast that the capsule was engineered to land safely with fewer than three parachutes.

Lunar Gravity Simulated for Research Payloads

According to reports, the NS-29 mission introduced a lunar gravity simulation for the first time using the New Shepard vehicle. The capsule achieved this by rotating approximately 11 times per minute for a duration of two minutes, a manoeuvre facilitated by its reaction-control thrusters. The mission carried 30 research payloads, with 29 focused on lunar-related technologies. Blue Origin outlined six key research areas, including in-situ resource utilisation, dust mitigation, advanced habitation systems, sensors and instrumentation, small spacecraft technologies, and entry, descent, and landing systems.

NASA-Supported Research Aboard the Flight

More than half of the payloads were backed by NASA’s Flight Opportunities Program. The U.S. space agency is engaged in efforts to establish a long-term human presence on and around the Moon through the Artemis programme. A NASA experiment named the Electrostatic Dust Lofting project examined how lunar dust becomes electrically charged and lifted under ultraviolet light exposure. Another NASA-supported study, the Lunar-g Combustion Investigation, explored fire behaviour under the Moon’s gravity conditions to enhance safety measures for future lunar habitats.

Future Applications of Gravity Simulation

In an X(formerly Twitter) post, Blue Origin Chief Executive Officer Dave Limp stated that this capability provides NASA and other lunar technology developers with a cost-effective method to conduct research. He added that New Shepard’s gravity simulation could be adapted for Mars and other celestial bodies, expanding its potential for future space exploration research.

Continue Reading

Science

ISS Experiment Shows Moss Spores Can Survive Harsh Space Environment

Published

on

By

A hardy moss species survived 283 days on the outside of the ISS, enduring vacuum, radiation and extreme temperatures. More than 80% of its spores lived and germinated back on Earth. The findings reveal surprising resilience in early land plants and may support future Moon and Mars ecosystem designs.

Continue Reading

Science

NASA’s Perseverance Rover Finds Metal-Rich Rock on Mars: What You Need to Know

Published

on

By

NASA’s Perseverance rover has identified Phippsaksla, a sculpted, metal-rich boulder in Jezero Crater with an unusually high iron-nickel composition. The rock’s chemistry strongly suggests it is a meteorite formed elsewhere in the solar system. Its presence within impact-shaped terrain offers fresh clues about ancient asteroids and helps scientists reconstruct key…

Continue Reading

Science

Asteroid 2024 YR4: Earth Safe, but New Data Shows Small 2032 Lunar Impact Risk

Published

on

By

Asteroid 2024 YR4 has been cleared as an Earth threat, but updated observations show a small chance it could hit the Moon in 2032. Space agencies are monitoring the asteroid closely, expecting new data to narrow uncertainties and determine whether the lunar-impact probability will drop or rise.

Continue Reading

Trending