Connect with us

Published

on

NASA is inviting U.S. companies to collaborate on the Volatiles Investigating Polar Exploration Rover (VIPER), a mission initially halted due to budget constraints. Designed to search for water ice near the lunar south pole, VIPER was originally planned as a $450 million project. The agency had cancelled the mission in July 2024, citing cost-saving measures. Now, a fresh call has been made to private firms willing to take on the challenge of delivering the rover to the Moon, conducting exploration, and sharing scientific data. A final decision is expected in the coming months.

VIPER’s Role in Lunar Exploration

According to NASA’s announcement, VIPER was designed to support Artemis program objectives by locating potential water ice deposits. These resources are crucial for future human missions and lunar surface operations. Initially set to launch aboard the Griffin lander by Astrobotic Technology, the mission was shelved before its deployment. Following interest from private firms, NASA has decided to explore new avenues for its deployment while ensuring that the scientific goals remain intact.

Proposals and Selection Process

NASA officials have confirmed that responses from interested companies must be submitted by February 20, 2025. Selected candidates will be invited to provide more detailed proposals, with final selections anticipated by mid-year. The agency has clarified that while VIPER will be handed over in its current state, modifications involving dismantling its instruments for use on other spacecraft will not be permitted. Companies will be required to manage landing operations, conduct scientific research, and ensure data dissemination as part of the agreement.

Potential Benefits for Private Firms

In a statement in an official press release by NASA, Joel Kearns, Deputy Associate Administrator for Exploration in NASA’s Science Mission Directorate, stated that the partnership would provide significant opportunities for private firms looking to advance their lunar surface capabilities. He emphasised that VIPER’s deployment could mark a critical step toward commercial involvement in lunar exploration, reinforcing NASA’s commitment to fostering public-private collaborations.

Future of Lunar Resource Exploration

As NASA continues to push for sustainable lunar exploration, the integration of private-sector capabilities is seen as a key element in reducing costs and expanding mission possibilities. With lunar resource utilisation playing a major role in future space endeavours, the agency remains focused on ensuring that scientific objectives are met while advancing commercial lunar operations. The final selection of partners for VIPER is expected to set the stage for upcoming exploration missions and resource prospecting efforts on the Moon.

Continue Reading

Science

Astronomers Predict 90 Percent Chance of Spotting an Exploding Black Hole in Next Decade

Published

on

By

Astronomers now predict a 90% chance of detecting an exploding primordial black hole within a decade. Such an event would confirm Stephen Hawking’s theory that black holes evaporate, releasing a flash of radiation and exotic particles. Detecting one would revolutionize physics and rewrite our understanding of the universe.

Continue Reading

Science

DNA Cassette Tapes Could Transform the Future of Digital Storage

Published

on

By

Researchers in China have developed a DNA “cassette tape” that stores data at densities far beyond current drives. By encoding digital files into DNA strands embedded on tape, the system allows compact, sustainable archival storage. A 100-meter DNA tape could hold 36 petabytes, reshaping the future of data centers.

Continue Reading

Science

Researchers Create Metal That Resists Cracking in Deep Space Cold

Published

on

By

Researchers have engineered a cobalt-nickel-vanadium alloy that stays tough even at –186°C, resisting the brittleness that plagues most metals in extreme cold. Using atomic-scale design, the team created dual structural patterns inside the alloy that block cracks and preserve ductility. In lab tests, the metal absorbed far more strain than conventional steels.

Continue Reading

Trending