Connect with us

Published

on

A cargo-return technology developed by Germany-based Atmos Space Cargo is set to undergo its first in-space test with an upcoming SpaceX mission. The company’s Phoenix capsule will be launched aboard the Bandwagon 3 rideshare mission, scheduled for no earlier than April. The capsule has been designed to facilitate the safe return of high-value materials from orbit, particularly benefiting the biomedical sector. The test mission aims to gather crucial data on the capsule’s subsystems, onboard payloads, and reentry performance.

Mission Objectives and Scientific Payloads

According to reports, the Phoenix capsule will carry four payloads, including a radiation detector from the German Aerospace Center (DLR) and a bioreactor from UK-based Frontier Space. The mission’s primary goals include testing Phoenix’s performance in orbit, evaluating data from customer experiments, and deploying its proprietary inflatable atmospheric decelerator (IAD) for reentry stabilisation. This technology, acting as both a heat shield and parachute, is intended to enable a controlled descent back to Earth.

Challenges in Returning Space Cargo

Industry experts highlight that while the cost and complexity of launching experiments into space have been reduced, bringing them back to Earth remains a challenge due to high costs, long turnaround times, and technical difficulties. Atmos Space Cargo has positioned Phoenix as a cost-effective and reliable solution for returning biomedical samples, microgravity-manufactured materials, and other sensitive payloads.

Future Prospects and Industry Impact

Despite expectations that Phoenix will not survive its debut mission, the collected data will contribute to future improvements. Larger iterations of the capsule are planned to carry heavier payloads, including potential returns of rocket stages. Advisory board member and former NASA Deputy Administrator Lori Garver has stated that advancements in reusable and affordable cargo return technology are critical for the future of orbital space operations. The initiative aligns with broader efforts to enhance accessibility to in-space manufacturing and research.

Continue Reading

Science

New Shortcut Lets Scientists Run Complex Quantum Models on a Laptop

Published

on

By

A University at Buffalo team has redesigned the truncated Wigner approximation into an easy, plug-and-play template that lets scientists run complex quantum simulations on everyday laptops. The method works for open systems, slashes computing demands, and helps free supercomputers for the hardest quantum problems.

Continue Reading

Science

Glaciers Speed Up in Summer and Slow in Winter, New Global Map Reveals

Published

on

By

A new global map of glacier speeds, built from nearly a decade of satellite observations, shows that glaciers consistently move faster in summer and slower in winter. Meltwater acts as a natural lubricant, accelerating flow during warm months. Scientists warn that glaciers with strong seasonal shifts are likely to speed up long-term, adding to future sea-level rise.

Continue Reading

Science

Engineers Turn Lobster Shells Into Robot Parts That Lift, Grip and Swim

Published

on

By

Engineers have transformed discarded crustacean shells into functional biohybrid robots by softening the shell segments, adding elastomers, and attaching motors. These recycled structures can lift weight, grasp delicate items, and even propel small swimmers. The project demonstrates how food waste can become a sustainable robotics resource, though challenges remain wi…

Continue Reading

Trending