Connect with us

Published

on

A new space mission designed to study the Sun’s outer atmosphere and track space weather in three dimensions is set to launch this month. NASA’s Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission, consisting of four small satellites, is scheduled to be sent into orbit aboard a SpaceX Falcon 9 rocket on February 27. This mission aims to investigate the transformation of the Sun’s corona into the solar wind, the stream of charged particles that extends throughout the solar system. The data collected could improve understanding of solar wind dynamics and space weather forecasting, which has implications for Earth’s power grids and satellites.

Mission Objectives and Scientific Goals

According to reports, PUNCH is the first initiative specifically designed to bridge the gap between solar physics and solar wind physics. The mission will study how the Sun’s outer atmosphere transitions into the heliosphere—a vast region shaped by the solar wind that encases the solar system. Joe Westlake, Director of NASA’s Heliophysics Division, stated that this mission will provide a continuous observation of the Sun’s corona and its influence on space weather.

How PUNCH Works

PUNCH will consist of four satellites working together to create 3D observations of the heliosphere. Craig DeForest, the mission’s principal investigator at the Southwest Research Institute, explained that three of these satellites will be equipped with wide-field imagers to capture detailed views of solar wind structures. A fourth satellite, developed by the Naval Research Laboratory, will use a narrow-field imager to create an artificial total solar eclipse, allowing continuous monitoring of the Sun’s corona in high definition.

Advancements in Space Weather Forecasting

This mission is expected to enhance space weather forecasting by enabling real-time tracking of solar storms. According to Nicholeen Viall, a mission scientist at NASA’s Goddard Space Flight Center, PUNCH’s ability to capture polarized light will allow scientists to determine the 3D location of solar wind structures. This could improve predictions of geomagnetic storms, which have the potential to impact satellites and power infrastructure on Earth.

Collaboration with Other Solar Missions

NASA has confirmed that PUNCH will complement the Parker Solar Probe, which is currently making direct observations of the Sun’s corona. Together, these missions will provide a comprehensive dataset spanning vast scales, offering unprecedented insights into how solar wind originates and interacts with the heliosphere. DeForest added that an additional outcome of PUNCH will be the creation of the most extensive polarimetric star map, covering over three-quarters of the visible sky.

Continue Reading

Science

Rocket Lab’s Neutron Rocket to Land at Sea, First Launch Set for 2025

Published

on

By

Rocket Lab’s Neutron Rocket to Land at Sea, First Launch Set for 2025

Rocket Lab has confirmed that its reusable Neutron rocket is set for its first launch in the latter half of 2025. The announcement was made during the company’s earnings call on 26 February, where Peter Beck, Founder and CEO, outlined plans to address increasing demand for medium-lift launch services. He stated that rapid development efforts are underway to bring the rocket online as quickly as possible. The Neutron rocket has been designed to serve defence, security, and scientific missions, filling a gap in the market where launch options remain limited. A new offshore barge, named “Return on Investment,” is set to be used for rocket recovery, expanding mission possibilities.

Sea-Based Landing Platform Revealed

According to Rocket Lab, a modified offshore barge will be utilised as a landing platform for the Neutron rocket’s recovery. Peter Beck highlighted that this addition will enhance operational flexibility by allowing for greater mission efficiency. The company aims to improve accessibility to space while ensuring the maximum performance of Neutron’s capabilities.

Flatellite: Rocket Lab’s New Satellite Platform

Rocket Lab has also introduced “Flatellite,” a flat satellite system engineered for large-scale deployment. Sources have reported that these satellites will be manufactured in high volumes to support large constellations. The design enables efficient stacking, allowing for multiple satellites to be launched together, optimising payload capacity. Peter Beck stated that this initiative aligns with Rocket Lab’s vision of establishing an end-to-end space service, extending its role beyond launch services to satellite operations.

Electron Launches Continue

Rocket Lab’s Electron rocket remains active, with an upcoming launch scheduled for this month. Reports indicate that an agreement has been signed with the Japanese company Institute for Q-shu Pioneers of Space (iQPS) for multiple missions over the next two years. According to Shunsuke Onishi, CEO of iQPS, the reliability and frequency of Electron missions align with their objectives for building a satellite constellation.

Continue Reading

Science

Boeing Starliner Astronauts Set To Return on March 16 After 10-Month ISS Stay

Published

on

By

Boeing Starliner Astronauts Set To Return on March 16 After 10-Month ISS Stay

A mission initially planned for ten days has stretched into nearly ten months, with two NASA astronauts finally set to return to Earth. Astronauts Barry Wilmore and Sunita Williams, who launched aboard Boeing’s Starliner on June 5, 2024, were meant to conduct a short-duration test flight to the International Space Station (ISS). However, issues with the spacecraft resulted in their prolonged stay. Their return is now scheduled for March 16, 2025, following the arrival of their relief crew.

Details of The Return

According to NASA’s flight schedule, Starliner was originally expected to bring the astronauts back, but after assessing its performance, the decision was made to return it uncrewed in September 2024. As reported, NASA instead adjusted its crew rotation plan, allocating seats for Wilmore and Williams on the SpaceX Crew Dragon, which launched as part of Crew-9. The return mission was initially scheduled for February but was delayed further due to operational constraints. The ISS program has now confirmed that their journey back will take place this month.

Crew-10 Mission Prepares for Launch

Four astronauts are set to launch aboard SpaceX’s Crew-10 mission on March 12, 2025, from Kennedy Space Center in Florida. The mission, commanded by NASA astronaut Anne McClain, includes pilot Nichole Ayers, Japan Aerospace Exploration Agency (JAXA) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov. Their arrival at the ISS will facilitate the Crew-9 team’s return, including Wilmore and Williams.

Adjustments in Spacecraft Selection

NASA officials have confirmed that Crew-10 will travel aboard the previously flown Dragon capsule, Endurance. The switch from a newly manufactured spacecraft was prompted by battery-related delays, leading to the decision to use a flight-proven alternative. Steve Stich, NASA’s Commercial Crew Program manager, stated during a briefing that changes in vehicle assignments are a routine part of mission planning.

Continue Reading

Science

ISS Captures Rare Gigantic Jet, a Massive Upward Lightning Over New Orleans

Published

on

By

ISS Captures Rare Gigantic Jet, a Massive Upward Lightning Over New Orleans

A rare “gigantic jet” of lightning was captured in a newly released image taken from the International Space Station (ISS). The photograph, dated November 19, 2024, shows a powerful discharge of blue light extending from a thunderstorm, likely reaching around 50 miles (80 kilometers) above Earth’s surface. The image, originally not publicised by NASA or any other space agency, surfaced after photographer Frankie Lucena identified it on the Gateway to Astronaut Photography of Earth website. The striking phenomenon was later shared by Spaceweather.com on February 26, bringing renewed attention to these elusive atmospheric events.

Gigantic Jet Confirmed by Analysis

According to reports, the ISS had captured four photographs of lightning around the time of the event, with only one displaying a clear upward-shooting jet. The exact location of the phenomenon remains uncertain due to cloud cover, but ISS tracking data suggests it likely occurred just off the coast of New Orleans. Gigantic jets are rarely observed, with only a limited number of documented cases since their discovery in 2001.

How Gigantic Jets Form

These towering lightning bolts occur when electrical charge distributions within a thunderstorm are disrupted, causing energy to be released upwards rather than toward the ground. The distinctive blue hue results from interactions with nitrogen in the upper atmosphere. Most gigantic jets extend into the ionosphere, the electrically charged layer of Earth’s atmosphere starting around 50 miles above the surface.

Energetic Nature of Upward Lightning

Previous studies have shown that gigantic jets can carry significantly more energy than standard lightning bolts. A record-breaking event over Oklahoma in May 2018 was found to have 60 times the energy of an average strike. In addition to the main jet, faint branching red discharges, similar to sprites, can be seen in the recent ISS image, highlighting the complexity of these high-altitude electrical events.

Continue Reading

Trending