Connect with us

Published

on

Efforts to study antimatter have progressed with new precision measurements conducted by an international team of researchers at CERN. The ALPHA experiment has been focused on antihydrogen, the antimatter counterpart of hydrogen, to understand its fundamental properties. The latest findings have allowed scientists to measure an electronic transition in antihydrogen with increased accuracy, which could help determine whether antimatter behaves in accordance with established physics principles. These results mark a significant step in comparing antihydrogen to hydrogen, which has been extensively studied.

Findings from the ALPHA Experiment

According to a study published in Nature Physics, the ALPHA collaboration has measured the 1S–2S transition in antihydrogen atoms using improved techniques. This transition, an electronic energy shift, has been observed in both accessible hyperfine components, providing new insights into the internal structure of antihydrogen. The research has employed laser cooling methods, which have helped narrow spectral measurements by reducing atomic motion.

In a statement to Phys.org, Jeffrey Scott Hangst, spokesperson for the ALPHA collaboration, stated that the ability to produce, confine, and study antihydrogen remains unique to their research team. Hangst noted that these advancements allow for comparisons between hydrogen and antihydrogen at an unprecedented level of precision.

Impact of New Techniques

A key achievement of the experiment has been the reduction in the time required to conduct these measurements. Previous studies on the same transition took approximately ten weeks, whereas the new approach enables data collection within a day. This improvement has been attributed to the accumulation of antihydrogen atoms and refined measurement techniques. Hangst explained that this progress allows for repeated measurements, enhancing the stability and reliability of results.

Future Research and Implications

Further studies are expected to refine these measurements, with researchers aiming to match the precision achieved in hydrogen studies. The long-term objective is to determine if antimatter follows the same physical laws as matter. If significant differences are found, they could challenge current understandings of fundamental physics. The next phase of research is set to build upon these findings, with results anticipated later this year.

Continue Reading

Science

Astronomers Detect Black Hole 36 Billion Times the Sun’s Mass, Among Largest Ever Found

Published

on

By

Astronomers have detected a dormant black hole with a mass equal to 36 billion Suns in the Cosmic Horseshoe system, 5 billion light-years away. Identified via gravitational lensing and stellar motion, it ranks among the largest known black holes. The discovery sheds light on the link between galaxy size and central black hole growth.

Continue Reading

Science

NASA Tests Tiltwing Wing Model to Boost Advanced Air Mobility Designs

Published

on

By

NASA’s latest wind tunnel tests on a tiltwing model are giving the advanced air mobility industry valuable data to improve air taxi and drone designs. By studying wing and propeller interactions in different conditions, NASA is helping create safer and more efficient next-generation aircraft.

Continue Reading

Science

Self-Adaptive Electrolytes Expand Stability for Fast-Charging High-Energy Batteries

Published

on

By

University of Maryland researchers have designed self-adaptive electrolytes that dynamically expand their stability during charging, enabling safer and faster high-energy batteries. Inspired by the “salting-out” effect, the approach has shown improved performance in both lithium-metal and zinc-metal cells, paving the way for next-generation energy storage solution…

Continue Reading

Trending