Connect with us

Published

on

A rare Einstein ring has been detected by the Euclid space telescope, offering valuable insights into dark matter distribution. The phenomenon, created by the gravitational lensing effect of a galaxy located nearly 600 million light-years away, has provided researchers with a means to analyse the mass and composition of the lensing galaxy. The discovery occurred as Euclid commenced its mission to construct an extensive 3D map of the universe.

Dark Matter Insights from Gravitational Lensing

According to research published in Astronomy & Astrophysics, the gravitational lens responsible for this Einstein ring has been identified as the galaxy NGC 6505. Situated around 590 million light-years from Earth, the galaxy’s mass is significant enough to bend light from a more distant source, forming a nearly perfect circle. This alignment has enabled scientists to examine the lensing galaxy’s central region, where dark matter presence is notably lower than expected.

As reported by space.com, the research team has referred to this structure as “Altieri’s lens,” named after astronomer Bruno Altieri, who played a key role in its identification. The lensing effect allows astronomers to measure the mass distribution of NGC 6505, revealing that dark matter accounts for approximately 11 percent of the central region’s total mass. Giulia Despali, a researcher at the University of Bologna, stated that this percentage contrasts sharply with dark matter’s estimated 85 percent contribution to the universe’s overall mass.

Einstein Rings and Their Significance

The discovery of an Einstein ring aligns with Albert Einstein’s general theory of relativity, which predicts the warping of space-time by massive objects. Strong gravitational lenses, such as the one seen in NGC 6505, provide a method for mapping the otherwise invisible distribution of dark matter. Massimo Meneghetti, a researcher at the National Institute for Astrophysics, explained that while galaxies at this distance are not typically powerful enough to form strong lenses, NGC 6505’s dense central mass has enabled this rare event. The nearly perfect symmetry of the ring suggests a precise alignment between the background light source, the lensing galaxy, and the telescope.

Euclid’s Mission and Future Discoveries

The Euclid telescope, launched in July 2023 by the European Space Agency (ESA), is designed to examine the dark universe by mapping cosmic structures over the past 10 billion years. Strong gravitational lenses such as Altieri’s lens are expected to be rare, with scientists estimating that no more than 20 similar structures will be identified over the mission’s course.

Despite this rarity, Euclid is projected to locate over 100,000 additional gravitational lensing events in its study of 14,000 square degrees of the sky. This extensive mapping will assist researchers in analysing the distribution of dark matter and dark energy across different galaxies and their evolution over time.

Continue Reading

Science

Study Finds grey Seals Can Track Blood Oxygen to Prevent Drowning

Published

on

By

Study Finds grey Seals Can Track Blood Oxygen to Prevent Drowning

Marine mammals rely on oxygen to survive, yet some species stay underwater for long periods without breathing. Scientists at the University of St Andrews wanted to understand how gray seals manage their time underwater without relying on carbon dioxide buildup as a signal. Six adult gray seals were placed in a controlled environment to observe their diving patterns. The seals were only allowed to surface at a designated chamber, where researchers adjusted oxygen and carbon dioxide levels to test their responses.

Research Confirms Oxygen as the Primary Trigger

According to the study published in Science, different air compositions were tested to measure their effect on dive times. The air in the breathing chamber was adjusted across four conditions: normal air, increased oxygen, reduced oxygen, and heightened carbon dioxide levels. When oxygen levels were increased, seals stayed underwater for longer. When oxygen was reduced, they surfaced sooner. Carbon dioxide changes did not alter their behavior, suggesting that oxygen, not carbon dioxide, determines when they come up for air.

Unique Adaptation in Marine Mammals

Researchers says that grey seals have an internal system to track oxygen levels. This allows them to surface before reaching dangerous limits. This ability prevents drowning and may be common among other marine species. Since deep-diving mammals must manage oxygen carefully, similar mechanisms could be present in whales, dolphins and other seals.

Experts Weigh in on the Discovery

Lucy Hawkes from the University of Exeter and Jessica Kendall-Bar from the University of California, San Diego, discussed the study’s impact. They noted that understanding this adaptation sheds light on how marine mammals survive in extreme underwater conditions. Further research could explore how this system works in different species and environments.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


iQOO Z10 Colour Options, Design Teased Ahead of April 11 India Launch



Netflix Now Supports Streaming HDR10+ Content on AV1-Enabled TVs, Streaming Devices

Continue Reading

Science

Japan’s Universal Memory Breakthrough Reduces Energy, Boosts Speed

Published

on

By

Japan’s Universal Memory Breakthrough Reduces Energy, Boosts Speed

A team of scientists in Japan has developed a new type of “universal memory” technology that could significantly reduce energy consumption while increasing processing speeds in future computing devices. The breakthrough, which centres on an improved form of Magnetoresistive Random Access Memory (MRAM), addresses a critical challenge in current memory technologies by combining the speed of RAM with the ability to retain information without constant power supply.

Overcoming Previous MRAM Limitations

According to the study published in the journal Advanced Science on December 25, 2024, the newly developed MRAM technology overcomes the high energy requirements that have traditionally limited MRAM implementation. While conventional MRAM devices consume minimal power in standby mode, they require substantial electric current to switch magnetisation directions that represent binary values, making them impractical for widespread use.

Innovative Component Design

The research team created what has been described as a “multiferroic heterostructure” that consists of ferromagnetic and piezoelectric materials separated by an ultrathin layer of vanadium. This configuration allows magnetisation to be controlled by an electric field rather than current, significantly reducing power consumption.

Vanadium Layer Provides Stability

Previous MRAM prototypes struggled with structural fluctuations in the ferromagnetic layer. This made it difficult to maintain stable magnetisation directions. The addition of the vanadium layer acts as a buffer between the materials. This in turn helps in enabling the device to maintain its shape and form while preserving the magnetic state even after the electric charge is removed.

Future Impact and Considerations

As per the researchers, their prototype demonstrated the ability to switch magnetisation direction using minimal electric current. However, the study did not address potential degradation in switching efficiency over time. This is a common issue in electrical devices.

This technology could potentially enable more powerful commercial computing with longer device lifespans, as it requires significantly less power than previous solutions and offers greater resilience than current RAM technologies without requiring moving parts.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


China’s ‘Kill Mesh’ Threatens US Satellites, Space Force Warns



Oppo Find X8s, Find X8+ Specifications Leaked; Said to Arrive With Dimensity 9400+ Chip

Related Stories

Continue Reading

Science

China’s ‘Kill Mesh’ Threatens US Satellites, Space Force Warns

Published

on

By

China’s ‘Kill Mesh’ Threatens US Satellites, Space Force Warns

China’s advancements in space warfare have led to the development of a “Kill Mesh” system. It has raised concerns about the security of US satellites. During the 16th annual McAleese “Defense Programs” Conference in Arlington, Virginia, General Michael Guetlein, Vice Chief of Space Operations for the US Space Force, highlighted the urgency of addressing these threats. He stressed that the gap in space capabilities between the US and its adversaries has narrowed significantly, making it necessary to reassess space defense strategies. A shift is required from providing space services to a focus on active protection against hostile actions in orbit.

China and Russia Intensify Orbital Military Activities

According to reports, China and Russia have been strengthening their space warfare capabilities. Russia’s anti-satellite (ASAT) test in 2022 resulted in a debris field in low-Earth orbit. In that very same year, a Chinese satellite was observed maneuvering another defunct satellite into a graveyard orbit, demonstrating advancements in orbital control technology. Guetlein said that adversaries have moved beyond passive space operations and are now engaged in satellite grappling, electronic warfare, and close-proximity tracking of US spacecraft.

Rising Threats to US Space Assets

As per reports, satellites capable of “jamming, spoofing, and dazzling” have become more common, marking a shift in space conflict strategies. Guetlein described recent events where foreign satellites have shadowed US spacecraft, creating a “cat and mouse” scenario. The previous unwritten rule of non-interference in space operations is no longer being followed, with adversaries increasingly engaging in hostile activities.

Strategic Response and Future Measures

The Space Force is reinforcing its infrastructure and increasing redundancies to counter growing threats. Guetlein acknowledged that commercial and allied partnerships are crucial in maintaining an advantage, as private space technology has surpassed some government capabilities. A new initiative called Golden Dome has been introduced to integrate defense technologies that previously operated separately. Guetlein stated that collaboration across sectors would strengthen space security and deter potential adversaries.

Continue Reading

Trending