Connect with us

Published

on

A rare Einstein ring has been detected by the Euclid space telescope, offering valuable insights into dark matter distribution. The phenomenon, created by the gravitational lensing effect of a galaxy located nearly 600 million light-years away, has provided researchers with a means to analyse the mass and composition of the lensing galaxy. The discovery occurred as Euclid commenced its mission to construct an extensive 3D map of the universe.

Dark Matter Insights from Gravitational Lensing

According to research published in Astronomy & Astrophysics, the gravitational lens responsible for this Einstein ring has been identified as the galaxy NGC 6505. Situated around 590 million light-years from Earth, the galaxy’s mass is significant enough to bend light from a more distant source, forming a nearly perfect circle. This alignment has enabled scientists to examine the lensing galaxy’s central region, where dark matter presence is notably lower than expected.

As reported by space.com, the research team has referred to this structure as “Altieri’s lens,” named after astronomer Bruno Altieri, who played a key role in its identification. The lensing effect allows astronomers to measure the mass distribution of NGC 6505, revealing that dark matter accounts for approximately 11 percent of the central region’s total mass. Giulia Despali, a researcher at the University of Bologna, stated that this percentage contrasts sharply with dark matter’s estimated 85 percent contribution to the universe’s overall mass.

Einstein Rings and Their Significance

The discovery of an Einstein ring aligns with Albert Einstein’s general theory of relativity, which predicts the warping of space-time by massive objects. Strong gravitational lenses, such as the one seen in NGC 6505, provide a method for mapping the otherwise invisible distribution of dark matter. Massimo Meneghetti, a researcher at the National Institute for Astrophysics, explained that while galaxies at this distance are not typically powerful enough to form strong lenses, NGC 6505’s dense central mass has enabled this rare event. The nearly perfect symmetry of the ring suggests a precise alignment between the background light source, the lensing galaxy, and the telescope.

Euclid’s Mission and Future Discoveries

The Euclid telescope, launched in July 2023 by the European Space Agency (ESA), is designed to examine the dark universe by mapping cosmic structures over the past 10 billion years. Strong gravitational lenses such as Altieri’s lens are expected to be rare, with scientists estimating that no more than 20 similar structures will be identified over the mission’s course.

Despite this rarity, Euclid is projected to locate over 100,000 additional gravitational lensing events in its study of 14,000 square degrees of the sky. This extensive mapping will assist researchers in analysing the distribution of dark matter and dark energy across different galaxies and their evolution over time.

Continue Reading

Science

Battery Breakthrough Could Make Solar Panels Cheaper and More Powerful

Published

on

By

Researchers in China have set a new 27.2 percent efficiency record for perovskite solar cells by fixing chlorine-ion clumping, a major barrier to performance. Their simple potassium-based method creates a uniform film and boosts long-term stability, marking a major step toward commercial adoption and more reliable low-cost solar energy.

Continue Reading

Science

Interstellar Comet 3I/ATLAS Photographed Beside Distant Galaxy in Rare Cosmic Shot

Published

on

By

A new image of interstellar comet 3I/ATLAS captures its glowing tails and a distant barred spiral galaxy, creating a dramatic cosmic overlap. Astronomers say the comet’s unusual features remain natural despite online speculation. With its closest Earth approach in December, researchers are preparing for sharper spacecraft images expected to reveal even more detail.

Continue Reading

Science

ESA’s Euclid Telescope Charts Over a Million Galaxies in Landmark First Data

Published

on

By

ESA’s Euclid space telescope has captured about 1.2 million galaxies in its first year, providing one of the most detailed wide-field surveys of the universe ever made. Covering distances up to 10 billion light-years, Euclid’s clear, expansive imaging is helping astronomers study galaxy shapes, mergers, dwarf galaxy populations, and the role of supermassive black …

Continue Reading

Trending