Connect with us

Published

on

The James Webb Space Telescope (JWST) has been allocated emergency observation time to study asteroid 2024 YR4, which has been classified as potentially hazardous. The space rock was identified in December 2024 and has been placed on the asteroid watch list due to its estimated 2.3% chance of colliding with Earth in December 2032. The emergency decision has been made to improve the accuracy of its size estimation, which is currently based on ground-based observations. Scientists believe that a more precise measurement of its dimensions will provide better insight into the potential risk it poses.

Infrared Observations to Determine True Size

According to reports, the European Space Agency (ESA), the asteroid has an estimated width of 55 metres, but this figure is uncertain due to limitations in ground-based telescopic observations. The asteroid’s brightness has been used to approximate its size, though its actual dimensions may vary significantly depending on surface reflectivity. If the surface is highly reflective, the asteroid could be as small as 40 metres. If it is less reflective, its true size could be as large as 90 metres, significantly altering the potential impact risk assessment.

JWST has been selected for this task due to its ability to capture infrared emissions, which can provide a more accurate measurement of the asteroid’s size and surface composition. Unlike ground telescopes, which rely on reflected sunlight, JWST’s infrared capabilities will detect heat emitted by the asteroid, offering a clearer picture of its actual dimensions. The updated information will play a crucial role in refining impact probability models and informing future planetary defence strategies.

Scheduled Observations and Data Availability

Observations using JWST are planned for March and May. The first session will coincide with the asteroid reaching peak brightness, while the second will take place as it moves away from the Sun. These observations will be conducted using four hours of JWST’s director’s discretionary time, a reserve allocation used for urgent scientific inquiries.

The data collected during these observations will be publicly released once processed. ESA has highlighted the significance of this research, stating that refining the size estimation of 2024 YR4 is essential for determining its potential impact consequences. The results will contribute to ongoing research into near-Earth objects and planetary defence strategies.

Previous Impacts and Potential Consequences

Historical events have demonstrated the damage that asteroids of this size can cause. The Tunguska event of 1908, which flattened an estimated 80 million trees over a vast area of Siberia, is believed to have been caused by an asteroid of similar dimensions. While an impact from 2024 YR4 would not cause mass extinction, the regional consequences could be severe.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


May 2024 Solar Storm Triggers Unusual Radiation Belts, Raising Space Safety Concerns



Motorola Razr+ Paris Hilton Edition With Custom Accessories Launched: Price, Features

Continue Reading

Science

AI Model Learns to Predict Human Gait for Smarter, Pre-Trained Exoskeleton Control

Published

on

By

Scientists at Georgia Tech have created an AI technique that pre-trains exoskeleton controllers using existing human motion datasets, removing the need for lengthy lab-based retraining. The system predicts joint behavior and assistance needs, enabling controllers that work as well as hand-tuned versions. This advance accelerates prototype development and could improve…

Continue Reading

Science

Scientists Build One of the Most Detailed Digital Simulations of the Mouse Cortex Using Japan’s Fugaku Supercomputer

Published

on

By

Researchers from the Allen Institute and Japan’s University of Electro-Communications have built one of the most detailed mouse cortex simulations ever created. Using Japan’s Fugaku supercomputer, the team modeled around 10 million neurons and 26 billion synapses, recreating realistic structure and activity. The virtual cortex offers a new platform for studying br…

Continue Reading

Science

UC San Diego Engineers Create Wearable Patch That Controls Robots Even in Chaotic Motion

Published

on

By

UC San Diego engineers have developed a soft, AI-enabled wearable patch that can interpret gestures with high accuracy even during vigorous or chaotic movement. The armband uses stretchable sensors, a custom deep-learning model, and on-chip processing to clean motion signals in real time. This breakthrough could enable intuitive robot control for rehabilitation, indus…

Continue Reading

Trending