Connect with us

Published

on

The behaviour of the universe on the largest scales is being examined through weak gravitational lensing, a method that may confirm or challenge the long-standing Cosmological Principle. This principle, which asserts that the universe is both homogeneous and isotropic, underpins the Standard Model of Cosmology. If inconsistencies are detected, fundamental assumptions about the universe’s structure may need to be reconsidered. Observations from new space telescopes are being used to analyse potential deviations, with findings expected to provide deeper insights into cosmic evolution.

Cosmological Principle Under Investigation

According to a study published in the Journal of Cosmology and Astroparticle Physics (JCAP), a methodology has been proposed to test the universe’s isotropy using weak gravitational lensing data. This effect, predicted by general relativity, occurs when light from distant galaxies is subtly bent by massive cosmic structures. Researchers have suggested that anomalies in this lensing data may indicate deviations from the assumption that the universe has no preferred direction.

James Adam, an astrophysicist at the University of the Western Cape, Cape Town, and lead author of the study, told Phys.org that the principle suggests no true centre exists in the universe. The Standard Model of Cosmology, which relies on this assumption, has been supported by various observations. However, inconsistencies in cosmic expansion measurements and the cosmic microwave background have raised questions about possible anisotropies.

Observations from the Euclid Space Telescope, launched in 2023, are being analysed to detect possible anisotropies. Weak gravitational lensing alters galaxy shapes in a measurable way, allowing researchers to distinguish between two lensing components—E-mode and B-mode shear. In an isotropic universe, only E-modes should appear on large scales, while B-modes remain weak. A correlation between the two could indicate a non-uniform cosmic expansion.

Future Observations and Potential Impact

The study simulated how an anisotropic expansion would modify weak lensing signals, demonstrating that Euclid’s data could be used to detect such deviations. If verified, these findings could require adjustments to current cosmological models. Adam stated to Phys.org that extensive validation is necessary before any fundamental assumptions are reconsidered. Future telescopic data will be analysed to confirm whether these anomalies represent real physical phenomena or observational errors.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Motorola Razr+ 2025 Design, Key Features Leaked; May Arrive as Razr 60 Ultra in Select Markets



Instagram Brings Teen Accounts With Additional Protections to Users in India

Continue Reading

Science

NASA’s Perseverance May Have Found Its First Meteorite on Mars

Published

on

By

NASA’s Perseverance rover may have discovered its first meteorite on Mars, a 31-inch iron-nickel boulder named Phippsaksla found in Jezero Crater. Its pitted, coral-like texture and unusually high metal content resemble meteorites previously identified by Curiosity, Spirit, and Opportunity. Scientists are now analysing the rock’s composition in detail to determine…

Continue Reading

Science

Dark Matter May Have Been Seen for the First Time in NASA Gamma-Ray Data

Published

on

By

A new analysis of NASA’s Fermi telescope data reveals a faint gamma-ray halo around the Milky Way’s core, matching predictions for annihilating dark-matter particles. Researchers say no known astrophysical source fits the signal, raising the possibility of the first direct evidence of dark matter. Experts, however, stress caution and call for verification in other…

Continue Reading

Science

Boiling Oceans May Hide Beneath Icy Moons, New Study Suggests

Published

on

By

A new study suggests that icy moons such as Mimas and Enceladus may host boiling subsurface oceans triggered by thinning ice shells and falling pressure. This low-temperature boiling could still support life beneath the surface. The research also explains geological features on larger icy moons and strengthens their potential as sites for finding extraterrestrial life…

Continue Reading

Trending