Connect with us

Published

on

Massive structures buried deep within the Earth’s mantle have been found to be more than a billion years old, according to recent research. These continent-sized formations, referred to as large low-seismic-velocity provinces (LLSVPs), are believed to be both older and hotter than their surrounding mantle. Situated at the boundary between the mantle and the outer core, approximately 3,000 kilometres beneath the Earth’s surface, these formations have puzzled scientists for decades. Their nature and origin have remained unclear, with seismic waves slowing down significantly when passing through them, suggesting distinct physical and compositional properties.

Blobs Deep Beneath Earth’s Surface

According to the study published in Nature, seismic data from over 100 significant earthquakes were analysed to understand these structures. As reported by space.com, Arwen Deuss, a seismologist at Utrecht University in the Netherlands, told Live Science that the primary observation has been the reduction in speed of seismic waves passing through these regions. However, an unexpected result was the reduced energy loss of these waves compared to the surrounding mantle, suggesting that factors beyond temperature influence these massive formations.

Role of Crystal Size in LLSVPs

Computer models have indicated that the mineral composition of these formations may be responsible for the observed phenomena. It has been proposed that the size of crystalline minerals within the LLSVPs plays a significant role. The research suggests that seismic waves lose energy when encountering grain boundaries between crystals. Smaller crystals result in increased energy loss due to the presence of more boundaries, whereas larger crystals cause lesser resistance. Deuss explained to Live Science that the surrounding mantle is composed of older tectonic plates that have broken into smaller fragments over time, whereas the LLSVPs contain much larger crystals that have remained undisturbed for extensive periods.

Implications for Earth’s Mantle and Surface

It has been suggested that these deep mantle structures have played a role in shaping the Earth’s surface. LLSVPs are believed to contribute to volcanic activity, with mantle plumes originating from these regions, bringing deep material to the surface. The composition of volcanic rocks worldwide could potentially be linked to these mantle formations, according to the study.

The age of these structures has been a subject of speculation, but the study provides substantial evidence supporting their billion-year existence. Deuss stated to Live Science that confirmation of their age allows for further exploration of their origins, stability, and long-term impact on Earth’s geological processes. Additional studies are expected to investigate how these formations have influenced the movement of tectonic plates and the overall behaviour of the mantle.

Continue Reading

Science

Electricity-Driven Nitrogen Insertion Opens a Sustainable Path to Drug-Ready Heterocycles

Published

on

By

Scientists at the National University of Singapore have developed an electricity-driven method to insert nitrogen into stable carbon rings, enabling greener synthesis of valuable heterocycles. Published in Nature Synthesis, the approach avoids harsh chemicals, reduces waste, and allows access to key drug-ready molecular frameworks under mild conditions.

Continue Reading

Science

Hubble Captures Rare Collision in Nearby Planetary System, Revealing Violent Planet Formation

Published

on

By

Astronomers using NASA’s Hubble Space Telescope have witnessed rare collisions between rocky bodies in the Fomalhaut system. The glowing debris clouds created by these impacts offer a unique glimpse into how planets form and highlight challenges in identifying true exoplanets.

Continue Reading

Science

Astronomers Observe Black Hole Twisting Spacetime for the First Time, Confirming Einstein’s Theory

Published

on

By

Astronomers have directly observed a black hole twisting spacetime for the first time, confirming Einstein’s long-standing prediction. The effect was detected during a violent stellar destruction event, where repeating X-ray and radio signals revealed a slow cosmic wobble. The discovery provides new insight into black hole spin, jets, and extreme gravity.

Continue Reading

Trending