Connect with us

Published

on

A potential method to reduce carbon dioxide (CO2) levels in the atmosphere has been identified, involving a material that could be used in agriculture. This approach utilises specific minerals to accelerate the natural process of carbon mineralisation, a method that could significantly impact carbon removal efforts. Research suggests that by modifying certain minerals, CO2 can be absorbed and locked into stable compounds much faster than traditional methods, potentially sequestering billions of tons annually. Scientists believe this innovation could complement existing climate mitigation strategies while benefiting agricultural practices.

Study Identifies Faster Carbon Capture Process

According to a study published in Nature, researchers have found that calcium silicates react with CO2 more efficiently than the traditionally used magnesium silicates. This reaction speed makes them a promising option for large-scale CO2 removal. The study, led by Stanford University chemist Matthew Kanan and postdoctoral researcher Yuxuan Chen, suggests that integrating these materials into agricultural soils could provide a dual benefit—enhancing soil quality while removing atmospheric CO2.

Mineral Conversion Could Enhance Efficiency

A method was developed to produce calcium silicates by heating a mixture of calcium oxide (CaO) and magnesium silicates at high temperatures. This process, which facilitates a mineral exchange, resulted in a material that binds CO2 thousands of times faster than natural weathering. Speaking to Science, Kanan noted that while magnesium silicates are abundant, calcium silicates are less available and require processing. The study outlines a technique to produce CaO from limestone, though capturing emissions from this process remains a challenge.

Practical Implications for Agriculture

Farmers currently use calcium carbonate to reduce soil acidity, applying about a billion tons annually. Replacing it with calcium silicate and magnesium oxide could serve the same purpose while also capturing CO2. Field trials have been initiated in Louisiana and New Jersey to assess potential impacts on soil health. According to reports, concerns regarding impurities in the minerals, such as trace metals, are being examined before large-scale implementation.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Tecno Camon 40 Series Set to Debut at MWC 2025; Will Feature Upgraded Universal Tone



Pixar’s Win or Lose Now Streaming on JioHotstar: Everything You Need to Know

Continue Reading

Science

MIT Detects Traces of a Lost ‘Proto Earth’ Deep Beneath Our Planet’s Surface

Published

on

By

MIT researchers have discovered rare isotopic traces of a “proto Earth” that existed before the giant impact that shaped our modern planet. Found deep in ancient rocks, these potassium isotope signatures reveal remnants of Earth’s earliest material, offering fresh insight into the planet’s formation and the solar system’s earliest history.

Continue Reading

Science

Astronomers Detect Heavy Water in Planet-Forming Disk Around Young Star

Published

on

By

Scientists have detected heavy water in the planet-forming disk around young star V883 Orionis, confirming the water existed long before the star formed. The discovery, made using ALMA, shows that water’s origins trace back to ancient interstellar clouds, linking molecular gas, comets, and planetary systems across billions of years.

Continue Reading

Science

NASA Experiment Shows Martian Ice Could Preserve Signs of Ancient Life

Published

on

By

A NASA study suggests that traces of ancient life could be locked in Martian ice. Lab tests freezing bacteria under Mars-like radiation revealed amino acids can persist for tens of millions of years. Researchers say pure ice offers protection, making Mars’ frozen regions ideal for searching preserved biomolecules.

Continue Reading

Trending