Connect with us

Published

on

Our environment continues to grapple with plastic pollution, with microplastics infiltrating the air, food, and water. Scientists are actively seeking methods to break down this persistent material. A new development has identified bacteria in wastewater that can degrade polyethylene terephthalate (PET), a plastic widely used in packaging and textiles. The discovery has raised hopes of reducing PET waste, which contributes significantly to microplastic contamination in water bodies. Research efforts are now focused on understanding and enhancing the plastic-degrading ability of these microbes.

Microbes Capable of Breaking Down PET Identified

According to a study published in Environmental Science and Technology, bacteria of the Comamonas genus have been found to degrade PET. Comamonas bacteria, commonly found in wastewater, were already known to grow on plastics in aquatic environments. This prompted Dr. Ludmilla Aristilde, an environmental biochemist at Northwestern University, and her team to investigate whether these microbes consume plastic as a source of energy. The study revealed that Comamonas testosteroni could break down PET, leading to the release of nano-sized plastic particles into water.

Enzyme Responsible for PET Breakdown Identified

As per reports, researchers observed the breakdown of PET after exposing it to C. testosteroni in a controlled laboratory setting for a month. Scanning electron microscope images showed that the bacteria had significantly altered the plastic’s surface, causing the release of plastic nanoparticles. Genetic analysis identified a specific enzyme responsible for breaking down PET. Further testing confirmed its role when bacteria engineered without the gene for this enzyme were unable to degrade plastic, while non-plastic-consuming bacteria equipped with the gene could digest PET.

Challenges and Future Research in Plastic Degradation

Dr. Ren Wei, a biochemist at the University of Greifswald, expressed skepticism to Science News Explore about the practical application of this discovery, stating in reports that the degradation process is too slow to significantly reduce global plastic pollution. On the contrary, Dr. Jay Mellies, a microbiologist at Reed College, viewed the findings as promising, emphasiaing that every viable method should be explored. Dr. Victor Gambarini, a microbiologist at the University of Auckland, echoed this sentiment, suggesting that further research should focus on identifying or engineering enzymes capable of degrading PET more efficiently. Efforts are now being directed toward improving the enzyme’s efficiency to make microbial plastic degradation a practical solution.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Science

ISRO Says Gaganyaan Mission Is 90 Percent Complete, Aiming for 2027 Launch

Published

on

By

ISRO has completed 90 percent of the Gaganyaan mission’s development. With three test flights ahead, India is set to join the elite group of nations capable of sending humans to space by 2027, marking a landmark step in its space exploration journey.

Continue Reading

Science

Saturn’s Moon Titan Breaks One of Chemistry’s Oldest Rules, NASA Study Reveals

Published

on

By

Saturn’s moon Titan has shocked scientists by breaking a key chemistry rule. NASA and Chalmers University researchers found that polar and nonpolar molecules, usually immiscible, can mix under Titan’s extreme cold. The discovery deepens our understanding of prebiotic chemistry and could reveal how life’s building blocks form in frigid extraterrestrial environmen…

Continue Reading

Science

Scientists Construct 5-Micron Engine Generating Effective Heat of 13 Million Degrees Celsius Without Burning

Published

on

By

A team of scientists has created a microscopic engine made from a 5-micrometre glass bead suspended in an electric field. By applying oscillating voltages, the bead moves as if it’s in an environment of 13 million°C, even though it remains cool. The study reveals bizarre thermodynamic effects at tiny scales, offering clues to how natural molecular “machines” wo…

Continue Reading

Trending